中国激光, 2022, 49 (5): 0507101, 网络出版: 2022-03-09   

光动力疗法基础研究与临床应用的新进展 下载: 3332次封底文章特邀综述

Recent Progress in Photodynamic Therapy: From Fundamental Research to Clinical Applications
作者单位
1 福建师范大学医学光电科学与技术教育部重点实验室,福建省光子技术重点实验室,福建 福州 350117
2 福州图鑫光电有限公司,福建 福州 350007
3 解放军总医院第一医学中心激光医学科,北京 100039
摘要
光动力疗法(PDT)是一种综合利用光敏剂、光和氧分子,通过光动力反应选择性地治疗恶性肿瘤、血管性病变和微生物感染等疾病的新型疗法。PDT作为光治疗的一种重要方法,已逐渐成为继手术、放疗和化疗之后治疗肿瘤的第四种微创疗法,同时还是治疗鲜红斑痣等特殊疾病的首选疗法。本文简要回顾PDT的研究现状;以提高PDT疗效为目标,重点分析光敏剂、光源、组织氧含量、协同治疗、量效评估等基础研究以及临床应用的研究进展;讨论临床个性化精准PDT及其推广应用所面临的挑战和发展方向。
Abstract
Significance

Photodynamic therapy (PDT) is an effective treatment modality for different types of cancer, vascular-related diseases, and microbiological infections. PDT uses photosensitizer (PS), the light of a specific wavelength, and molecular oxygen to produce highly toxic reactive oxygen species (ROS), which causes cell death via different mechanisms such as vessel constriction, immunological response, and cell damage by apoptosis, autophagy, and necrosis pathways. Fundamental studies of PDT suggest that ROS yield can be affected by various factors such as transportation efficiency and tumor-targeting ability of PSs, illumination strategy of excitation sources, oxygen supply or dependence of the ROS-generation process, and combination with other therapeutic methods, hence directly determining the therapeutic efficacy. Additionally, the relationship between treatment dose and PDT efficacy is still under investigation. The evaluation for PDT indirectly but considerably affects the PDT efficacy by accurately monitoring dosimetric parameters of PDT, which is followed by efficiently regulating and upgrading the therapeutic scheme. In this study, the recent advances in PSs, light sources, tissue oxygenation, synergistic treatment, and dosimetry for improving the clinical PDT efficacy are summarized.

Progress

Several novel PSs such as C60, black phosphorus, graphene quantum dots, and PSs with aggregation-induced emission, have been developed to improve the quantum yield of 1O2. The delivery efficiency of PSs has been improved by different PS delivery strategies and the tumor-microenvironment-responsive release scheme. PS absorption has been enhanced by organelle targeting and photochemical internalization, and PS hypoxia resistance has been resolved through loading with oxygen carriers or oxygen-generating reactants. Further, PS development with the synergistic therapeutic function will be used to enhance PDT efficacy.

As for PDT excitation sources, solar light, broad-spectrum lamps, lasers, light-emitting diodes (LEDs), X-ray sources, ultrasonic sources, and in vivo self-excited light sources capable of bioluminescence, chemiluminescence and Cherenkov light, have been widely studied. LEDs and lasers are the most popular light sources in clinical practice. Particularly, wearable, implantable, and disposable PDT light sources have progressed significantly because of the development of inorganic LED arrays, flexible LEDs, and wireless-driven LEDs. Further, in vivo self-excited light source has been studied to eliminate the absorption and scattering of light by biological tissues. Additionally, new illumination schemes of light fractionation and metronomic PDTs have been proposed to ensure oxygen supply during PDT treatment.

Oxygen carriers with high oxygen storage capacity or the chemical reaction substance can be delivered to the target lesion for in situ oxygen generation, which is the most popular method of enhancing oxygen supply for PDT. Additionally, hypoxia-activated linkers or prodrugs have been used to compensate for the low efficacy caused by hypoxia. However, reducing oxygen consumption during PDT can be achieved by limiting certain oxygen-consuming intracellular chemical reactions or reducing oxygen dependence using types Ⅰ or Ⅲ PDT.

To improve the therapeutic efficacy, PDT has been combined with clinical surgery, radiotherapy, chemotherapy, photothermal therapy, sonodynamic therapy, magnetic hyperthermia, and immunotherapy. Three or more modes for synergistic treatment with PDT have been presented. Further, simultaneously employing two PSs targeting different subcellular organelle is also employed to improve PDT efficacy.

Advanced optical imaging techniques such as hyperspectral imaging, Doppler optical coherence tomography, photoacoustic imaging measurement, and 1O2 luminescence imaging have been used successfully to monitor the dosimetric parameters from the original single-point/point-by-point signal acquisition to 2D imaging. The development of the detector has significantly improved the sensitivity, resolution, field of view, and speed of the optical imaging system. For example, the spatiotemporal detection of 1O2 luminescence can be accomplished by combining time-resolved scanning imaging and steady-state wide-field imaging.

Clinical applications of PDT are primarily used for tumor-, vascular-, and microbial-targeting treatments. Vascular-targeting PDT has been successfully demonstrated for treating vascular-related diseases such as age-related macular degeneration and port-wine stain. Additionally, PDT is effective against bacteria, viruses, and fungi in clinical applications.

Conclusions and Prospects

Despite its clinical effectiveness, PDT is currently underutilized because of the non-fully satisfied and expensive PS, unclear dose-efficiency relationship, and difficulties in translating proof-of-principle research. To further improve PDT efficacy, ongoing research is being pursued to develop the multifunctional nano-PS, wearable LED and self-excited light sources, and the spatiotemporal multimodal optical imaging platform for monitoring and optimizing dosimetric parameters for pre-, during-, and post-PDT.

1 引言

光动力疗法(PDT)是一种联合利用光敏剂(PS)、光和氧分子,通过光动力反应选择性地治疗恶性肿瘤、血管性病变和微生物感染等疾病的新型疗法[1]。PDT作为光治疗的一种重要方法,已逐渐成为继手术、放疗和化疗之后治疗肿瘤的第四种微创疗法,同时还是治疗鲜红斑痣等特殊疾病的首选疗法。PDT治疗前预先给患者注射或局部涂抹光敏剂,经过一定时间代谢之后,光敏剂被选择性地潴留在肿瘤或病变组织中,此时用特定波长的光源直接辐照病灶进行治疗。光敏剂、光和氧分子是PDT的三个基本要素。在特定波长光源的辐照下,潴留在靶组织中的基态光敏剂吸收光子的能量,激发跃迁到第一激发态,这些激发态光敏剂分子通过系间穿越(ISC)跃迁到激发三重态,处在激发三重态的光敏剂分子可以和基态氧分子(3O2)发生能量交换,从而产生具有生物毒性的活性氧(ROS)或自由基等活性物质,其中单线态氧(1O2)已被认为是Ⅱ型光动力反应的主要毒性物质。1O2可以氧化周围的生物分子,对它们造成不可逆的损伤,从而达到治疗的目的。

图1所示为2016年以来,Web of Science数据库中收录以PDT为主题的相关学术论文数量。可以看到,发表的论文数量呈逐年稳固递增趋势,其中我国学者发表的论文数量占比从2016年的26.58%增长到2020年的41.29%,充分展示了我国在PDT领域的发展态势。如图2所示,PDT领域的研究内容主要包括新型光敏剂(含协同治疗,50%)、生物作用机制(含调控肿瘤微环境,20%)、临床应用(15%)、剂量监测与优化(含量效评估,10%)以及其他相关内容(含光源,5%)等,这些也是国内外以PDT为主题学术会议的报告和讨论内容。在美国举办的每年一次西部光子学(Photonics West)会议中,Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic and Photobiomodulation Therapy 专题自1992年以来已连续召开30年。

图 1. PDT相关的学术论文数量

Fig. 1. PDT-relative publications

下载图片 查看所有图片

图 2. PDT领域的研究内容

Fig. 2. Main research topics in PDT

下载图片 查看所有图片

国际光动力协会(IPA)学术会议是另外一个反映PDT研究进展的重要专题大会,该会议每隔两年举办一次。特别值得一提的是,第19届IPA会议将于2023年再次在上海召开,这是一次充分展示我国PDT研究进展的盛会。在国内,亚洲光子学(Photonics Asia)会议、中国光学学会学术大会、全国激光技术与光电子学学术会议等会议均设有PDT专题。此外,福建师范大学联合柏林洪堡大学已成功主办了3届中德“单线态氧及其光动力效应”双边学术研讨会,重点关注1O2介导PDT的作用机制和疗效关系的研究。在学术期刊方面,Elsevier于2004年创办新刊Photodiagnosis and Photodynamic Therapy,以集中报道PDT领域的研究新进展;Photochemistry and Photobiology和《中国激光医学杂志》每期刊发的论文中至少有1/3属于PDT研究。

本文首先简要回顾PDT的研究现状。然后,以提高PDT疗效为目标,重点分析光敏剂、光源、组织氧含量、协同治疗、量效评估等基础研究以及临床应用的研究进展。最后,探讨了临床个性化精准PDT及其推广应用所面临挑战和发展方向。

2 光敏剂

光敏剂作为PDT的关键要素之一,其性能直接决定PDT的疗效及其临床应用与推广。自1993年光卟啉(Photofrin®)被批准用于临床PDT治疗以来,提升和优化光敏剂的性能和功能始终是国际前沿研究热点[2-3]。如表1所示,光卟啉已被成功应用于治疗肺癌、膀胱癌、宫颈癌、食管癌和支气管内膜癌,并相继在美国、日本、荷兰、挪威、德国和英国等国家获得临床许可,数以万计的癌症患者接受了PDT,并取得了显著疗效。在分类方面,光敏剂可根据其化学结构和组成分为卟啉类、酞菁类、叶绿素类和中草药类等,还可按临床治疗病种分为肿瘤靶向类、血管靶向类和微生物靶向类等。

表 1. 获临床应用批准或正在临床试验的光敏剂

Table 1. Photosensitizers with clinical approval or under clinical trials

GenerationPhotosensitizerIndicationState
FirstPhotofrin® (Porfimer sodium)Esophageal cancer, lung cancer, microinvasive endobronchial cancer, gastric and papillary bladder, cervical dysplasia, and cancerClinically approved
HiPorfinEsophageal cancer, lung cancer, bladder cancer, oral cancer, and skin cancer
HemoporfinPort wine stain
SecondFoscan® (Temoporfin)Approved: head and neck cancerClinically approved
Preclinical testing: breast and pancreatic cancer
Visudyne® (Verteporfin)Age-related macular degeneration
Laserphyrin®/NPe6/Talaporfin (Chlorin m-THPC)Approved: early lung cancer
Clinical trials: hepatocellular cancer and liver metastasis
Levulan® (Protoporphyrin)Actinic keratosis
Metvix®/Metvixia® (Protoporphyrin)Actinic keratosis and basal cell carcinoma
Photochlor (HPPH)BCC, lung, head, and neck cancers
Ameluz®/Levulan®(5-ALA)Approved: actinic keratosis
Clinical trials: brain
5-ALACondyloma acuminatum
Tookad® (Pheophorbides)Prostate cancer
Redaporfin®Biliary tract cancer, head, and neck
Purlytin®Metastatic breast, cancer, AIDS-related Kaposi’s sarcoma, and basal cell carcinomasUnder clinical trials
Lutrin® and Lutex® (metalloporphyrins)Clinicaltrials: recurrent prostate cancer and cervical cancer
Preclinical testing: recurrent breast cancer
PhotrexAge-related macular degeneration
AntrinCoronary artery disease
FotolonNasopharyngeal and sarcoma
RadachlorinSkin diseases
HypericinBladder cancer and nasopharyngeal cancer
Chalcogenopyrylium dyesProstate cancer, breast cancer, and colon cancer
Phenothiazinium dye-methylene BlueBladder cancer, colon cancer, and AIDS-related Kaposi’s sarcoma
Phenothiazinium dye-Nile blue and derivativesAIDS-related Kaposi’s sarcoma and T-cell leukemia
Phenothiazinium dye-toluidine BlueBladder cancer and mouse mammary sarcoma
CyaninesLeukemia and lymphoma
ADPM06Breast cancer and mouse lung cancer
PhotocynineEsophageal carcinoma
DVDMSEsophageal cancer
ThirdFunctional photosensitizerBeing developed

查看所有表

由于光卟啉存在化学组分复杂、水溶性低、癌细胞选择性弱、最大吸收峰波长短,以及要求避光时间长等不足,研究人员针对以上问题,致力于研发第二代新型光敏剂。第二代光敏剂大多为卟啉衍生物、金属酞菁和稠环醌类化合物等。与第一代光敏剂相比,第二代光敏剂不仅提高了肿瘤靶向能力,还通过调控吸收波长以增强治疗深度。此外,在缩短在体代谢时间和提高疗效等方面均有不同程度改进。由5-氨基酮戊酸(5-ALA)生成的原卟啉IX(PpIX)、氨基酮戊酸甲酯(MAL,Metvix®)、替莫泊芬注射剂(Foscan®)、他拉泊芬注射剂(NPe6,Laserphyrin®)和维替泊芬(Visudyne®)等,显著降低了病灶区域以外正常皮肤的光毒性,且能被生物组织中穿透力更强的光激发。其他获得临床许可应用的第二代光敏剂包括氨基乙酰丙酸盐酸盐(Levulan®)、焦脱镁叶绿素(HPPH)、盐酸氨基乙酰丙(Ameluz®)等,钯菌绿素(Tookad®)、瑞达泊芬(Redaporfin)、锡红紫素(tin ethyl etiopurpurin,SnET2,Purlytin, Photrex)、Lutrin®、德克萨斯卟啉(Lu-Tex)、Antrin®、二氢卟吩e6(Fotolon®)、Radachlorin®、金丝桃蒽醌(Hypericin)、Chalcogenopyrylium dyes、Phenothiazinium dye-methylene blue、Phenothiazinium dye-Nile blue and derivatives、Phenothiazinium dye-toluidine blue、Cyanines、ADPM06、福大赛因(Photocynine)和华卟啉钠(DVDMS)等光敏剂已进入临床试验阶段。在我国,北京制药工业研究所于1982年首次研制出BHpD(商品名:血卟啉注射液),并于2001年获得国家药品实验批准文号。目前,国产血卟啉注射液喜泊芬(HiPorfin)已实现产业化,并被批准用于口腔、膀胱、支气管、肺、消化系统等多系统和多部位的浅表肿瘤和癌前病变,以及鲜红斑痣(PWS)等良性血管疾病的PDT。与此同时,盐酸氨酮戊酸外用散(艾拉,2007年5月上市)和注射用海姆泊芬(复美达,2016年10月上市)经国家药品监督管理局(NMPA)批准分别用于治疗尖锐湿疣和PWS,其中海姆泊芬是获批用于治疗PWS的新型光敏剂。此外,还有两种正在临床试验的新型光敏剂:第一种是2014年获得NMPA的Ⅱ期药物临床试验批准的福大赛因,Ⅰ期和Ⅱ期临床试验研究结果表明该光敏剂对治疗食道癌安全有效;第二种是2015年4月获准用于食管癌Ⅰ期临床治疗的DVDMS。

然而,第二代光敏剂仍然存在水溶性偏低和靶向特异性弱等不足。近年来,研发集高1O2量子产率、主动靶向传输、肿瘤的诊断(如MRI和分子荧光成像等)、治疗(高热治疗和PDT)、剂量监测(单态氧探针和氧分子探针等),以及疗效评估(细胞凋亡探针、MRI和生物化学发光等)等功能于一体的第三代“功能型光敏剂”备受关注[4-6]。如图3所示,新型光敏剂的研发主要有六个发展方向:1)提高1O2量子产率。开发1O2量子产率高的新型光敏材料,如C60、黑磷、石墨烯量子点等,或研发聚集诱导发光型光敏剂[7-8]。2)提高光敏剂的递送效率。利用基于磁性纳米粒子的光敏剂在外加磁场作用下达到药物递送路径控制的目的,或利用肿瘤微环境特点研发具有酸性pH、谷胱甘肽(GSH)、H2O2、基质金属蛋白酶-2响应性或光响应性释放药物功能的光敏剂,以避免光敏剂在递送过程中过早泄漏[9-10]。3)增强细胞对光敏剂的吸收。利用表面修饰技术赋予光敏剂对癌细胞或亚细胞器的特异性识别能力,或通过光化学内化使PDT产生的ROS破坏内吞小泡膜,从而释放药物到细胞质,而不是降解于溶酶体中[11]。4)优化光敏剂对光能的利用率。采用具有多层次结构(如纳米花等)、高比表面积(如纳米片等)的纳米光敏剂材料增强光敏剂和光子的相互作用以提高光吸收率,以及利用光敏剂与重原子或过渡金属原子的结合提高光敏剂ISC效率或延长光敏剂的激发三重态寿命[12-13]。5)研发抗乏氧型光敏剂。将光敏剂与亲氧载体结合,或装载生成氧的反应物,是光敏剂为PDT供氧的主要方法,而采用Ⅰ型和Ⅲ型光敏剂替代耗氧的Ⅱ型光敏剂,可减少PDT的耗氧,达到抗乏氧效果[14-15]。6)研发具有协同治疗功能的光敏剂。大部分PDT参与的协同治疗高度依赖具有纳米平台功能的光敏剂,该光敏剂用于运载不同疗法所需药物或辅助物质(如化疗药物、免疫佐剂等),或用于转化激发源为不同疗法的抗肿瘤产物(如1O2或过高热)[16-17]。虽然对功能型光敏剂的研究方兴未艾(如图2所示,论文数量占比约50%),但临床试验数据和生物安全性评估严重匮乏,绝大部分研究工作尚处在原理性(principle-based concept)探索阶段,进入临床试验的理想新型光敏剂数量十分有限[18]

图 3. PDT新型光敏剂

Fig. 3. Novel photosensitizers for PDT

下载图片 查看所有图片

在临床应用中,理想PDT新型光敏剂应具备的基本特征包括:1)材料来源广泛,易于化学合成,具有良好的生物相容性;2)化学组分和构效明确;3)最大吸收峰位于近红外波段,有利于提高治疗深度;4)光敏化1O2量子产率高;5)光稳定性好,光漂白效应不显著;6)具有明确细胞或组织靶向性,即特异性强;7)药物毒副作用小,在体代谢排除速度快;8)同时具有本文所探讨的其他诊断和疗效监测等功能。

3 PDT光源

3.1 PDT光源

光源作为PDT的三大要素之一,其发光波长、辐照方式以及剂量直接决定PDT的选择性和疗效[19-20]。如图4所示,太阳光、广谱灯、激光器、发光二极管(LED)、X-射线源、超声波源以及体内自激发光源(如生物发光、化学发光和切伦科夫发光)等辐照源已广泛应用于PDT实验研究,其中LED和激光器是目前临床应用最为广泛的光源[4,21-22]。以LED为例,应用于PDT的LED主要包括无机LED阵列、柔性LED和无线驱动LED。无机LED阵列有效且易于实现,但由于体积较大且照光方式固定,其主要应用于PDT离体细胞试验,而在活体动物试验和临床治疗中应用较少。可穿戴PDT光源通过无机LED阵列与穿戴物品的结合以及柔性LED与无线驱动LED的结合,在贴合性与便携性方面有较大改善。此外,柔性LED和无线驱动LED还推动了可植入式以及一次性光源的研发,是未来PDT光源的重要发展方向[23]

图 4. PDT辐照源

Fig. 4. Irradiation sources for PDT

下载图片 查看所有图片

与此同时,由于受限于光在人体组织中的穿透深度,以及X射线和声波激发光敏剂极低的1O2量子产率,开发PDT体内自发光光源是另外一个重要发展方向[24-25]。尽管激发效率较低,体内自激发光源的最大优势在于可以避免体外辐照中组织对光的吸收和散射,进而提高光在组织中的穿透和治疗深度;同时,由于自激发光主要集中在治疗靶组织内部,对周围正常组织损伤小,极大地提高了治疗的精准性和安全性[26-27]

表2示,不同类型PDT辐射源的发光波长不尽相同,临床治疗时可根据实际需求进行选择。理想PDT光源的选择依据主要有:1)光敏剂的最佳吸收波长,是单光子还是双光子吸收,光源的发光光谱与光敏剂的吸收光谱匹配;2)治疗病灶的部位和大小,光波在组织中的穿透深度能否分别满足病灶深度需求;3)光源的最大发光功率、发光面积及其光稳定性;4)连续或脉冲输出光源;5)光源的性价比及其操控技术要求等。

表 2. PDT辐射源及相应的发光波长

Table 2. Irradiation sources for PDT and their wavelengths

Irradiation sourceMechanical waveX-rayUVVisible light (400700 nm)NIR-Ⅰ (700900 nm)NIR-Ⅱ (10001700 nm)
Day-light
Broad-spectrum lamp
Laser
LED
Self-excitation source
X-ray source
Acoustic wave source

查看所有表

3.2 辐射源照光方式

临床治疗时,一般采用较高的光通量密度进行连续辐照,这种方式容易造成组织中氧的消耗速率远远大于氧从周围血管通过扩散补给的速率,从而降低了PDT疗效。为了保证治疗过程中氧的供给,人们提出了“间断性 PDT”和“节律性PDT(mPDT)”两种新的治疗模式。当治疗光剂量相同时,间断性 PDT 采用间断性光照方式,避免组织中氧的快速耗竭;节律性 PDT 则是通过降低光通量密度和延长治疗时间来维持组织氧分压,进而获得稳定的1O2产量。与此同时,如果PDT光源采用脉冲照光方式,尤其是超脉冲照光方式,可有效提高PDT疗效。实验结果表明:采用脉冲和超脉冲照光方式时,可以有效避免组织热损伤和缺氧(氧在脉冲间隔时间内获得补给)。由于组织体的光学特性随温度变化而改变,基于脉冲的照光方式可最小化由温度变化导致的组织光学特性改变,从而实现更加精确和稳定的治疗[28]

4 组织氧含量

在Ⅱ型PDT中,氧分子参与光敏化的动力学反应过程,直接决定光敏化1O2产量和PDT疗效。表征含氧量的主要参量包括氧分压(pO2)、氧浓度和血红蛋白氧饱和度(HbSat)等,组织含氧量受到以下因素的影响:1)治疗靶组织的微环境,以实体肿瘤为例,组织乏氧是PDT疗效受限的关键影响因素;2)Ⅱ型PDT属于耗氧反应,组织氧含量将随着治疗时间的延长而减小;3)PDT过程中引起供氧微血管的封闭,限制氧后续供给,导致组织缺氧。如图5所示,可采用增强氧供给或降低氧损耗两种方法来保障PDT过程中氧的供给和补给[29]

图 5. 克服PDT乏氧的方法

Fig. 5. Approaches against hypoxia during PDT treatment

下载图片 查看所有图片

4.3 增强氧供给

氧载体具有强储氧能力,是增强PDT氧供给最为常用的方法[30]。氧载体由血红蛋白分子等天然物质、无机物或有机聚合物制成,通过物理吸附氧分子并将其运输到病灶位置,以确保光敏化过程中氧的供给和补给。哺乳动物主要利用体内血红蛋白运输氧气,单个红细胞(RBC)含有20~200亿个血红蛋白分子,每个血红蛋白分子可与氧自由结合或分离。RBC和血红蛋白分子具有良好的生物相容性,已被广泛应用于肿瘤的增强供氧[31]。基于血红蛋白的氧载体,通过键合连接或封装于光敏剂,与光敏剂一起潴留于病灶并释放氧,有效改善乏氧环境。此外,全氟碳纳米颗粒、含氟多肽以及含氟聚合物均具有很好的载氧功能[32]。有机高分子材料中的金属-有机骨架、共价有机高分子和共价有机骨架因具有多孔结构和较大表面积而被应用于氧气储存和药物传递[33]

除了氧载体,将化学反应物送至病灶,通过化学反应在靶点生成氧气,也可提高组织的含氧量。在肿瘤微环境中具有高浓度的H2O2,而H2O2与MnO2是PDT最常采用的生成氧气的反应物[34],通过将含MnO2的光敏剂递送到治疗病灶,MnO2被H2O2还原为Mn2+并同时生成氧气。随后,Mn2+进一步与H2O2反应生成MnO2,MnO2与H2O2反应生成O2,并重新被还原为Mn2+,重复以上反应。H2O2与MnO2优良的溶解性,以及Mn2+的快速代谢,使得该方法的生物安全性高。同时,CaO2在潮湿环境下逐渐释放氧气,有利于解决PDT组织含氧量不足的难题[35]。此外,分解氧化物/过氧化物也可释放氧气,这种反应因无金属参与而具有良好的生物相容性[36]。将光敏剂与光合细菌结合的自供氧方法因具有生物安全性高、调控性能好、产氧量高、成本低等优点,已在PDT治疗心血管疾病中得到初步应用[37]

4.4 降低氧损耗

利用氧载体或利用化学反应可以增强组织的含氧量,但这些方法的氧气释放速度较快,只能暂时缓解或改善乏氧环境。为此,延缓或降低氧耗是另一种改善组织乏氧的有效方法。通过优化辐照方案减缓氧气消耗是实现持续供氧的方法之一。对病灶的连续辐照导致氧气迅速消耗,为避免过快缺氧,采用的辐照方案包括:低光通量密度并延长辐照时间;间歇式辐照,即分段模式或脉冲模式。这两种方法均延缓氧耗过程,在PDT过程中实现均匀持续供氧。

PDT采用具有乏氧环境响应性的可分裂连接物或前药参与治疗,以改善由乏氧导致的较低疗效问题。利用乏氧环境响应性的可分裂连接物将光敏剂与化疗药物结合,在辐照条件下,光敏剂消耗氧气生成1O2,导致组织内出现乏氧环境,乏氧条件使连接物断裂,释放诱导癌细胞损伤的化疗药物参与肿瘤治疗。与乏氧环境响应性的可分裂连接物的间接作用不同,AQ4N、替拉扎明等乏氧环境响应性前药在PDT后出现氧耗竭时,直接产生细胞毒性物质用于治疗[38-39]

同时,减少PDT耗氧量或降低氧依赖也是有效的解决方法。部分细胞内化学反应如线粒体相关氧化磷酸化(OXPHOS)十分耗氧,但采用抑制药物,如阿托伐醌,可高效抑制OXPHOS的活性,降低氧消耗量[40]。此外,在PDT过程中组织体含氧量的差异将引发作用机制Ⅰ型和Ⅱ型光化学反应的变化。当体系中含氧量充足时,Ⅱ型光化学反应占主导地位;当组织体含氧量降低到pO2<2 mmHg (1 mmHg=133.322 Pa)时,Ⅰ型光化学反应变为主导作用。使用Ⅰ型PDT替代氧需求较高的Ⅱ型PDT可降低治疗过程中的氧需求量[41]。目前适用于临床Ⅰ型PDT的光敏剂数量远少于Ⅱ型,其中无机光敏剂如ZnO 纳米棒、TiO2 纳米颗粒等在光辐照下生成电子-空穴对,随后与H2O分子反应生成羟基自由基。另外,Ⅲ型PDT(即光激活化疗,PACT)允许电子从激发的光敏剂传递至DNA等生物分子,通过无氧PDT过程在乏氧环境中开展有效治疗[42]

5 协同治疗

临床手术是最简单直观的方法;化疗和放疗可获得较高的肿瘤抑制率;光热疗法(PTT)、PDT和磁热疗(MHT)的毒副作用小且肿瘤选择性良好;与其他疗法相比,免疫疗法在抑制肿瘤转移和复发方面独具优越性;声动力疗法(SDT)的超声激发源实现了深部病灶的治疗。如图6所示,为了提高疗效,PDT可以分别联合手术、放疗、化疗、PTT、SDT、MHT和免疫疗法等,以及同时使用两种不同光敏剂等协同治疗新策略[43-44]。PDT与其他肿瘤疗法的协同治疗,有利于弥补各自缺点,实现不同疗法之间的优势互补。

图 6. 增强PDT的协同治疗策略

Fig. 6. Synergistic strategies for enhanced PDT

下载图片 查看所有图片

临床肿瘤切除手术,即便完全切除病灶,也仅适用于治愈非恶性肿瘤,而对于恶性肿瘤,切除手术治疗要复杂得多。大量临床实践证明,手术切除不能切除体内所有肿瘤细胞,不仅存在术后复发转移的可能,而且存在术后出现严重并发症的风险。因此,肿瘤切除手术联合PDT可进一步杀死残留癌细胞,降低肿瘤复发概率。此外,肿瘤体积过大导致手术难度与风险提高,且大创口面积增加了患者术后感染风险,延长了恢复周期。为此,对大体积肿瘤病患采用PDT进行术前预处理,可缩减肿瘤体积,利于后续切除手术与术后康复。PDT与临床肿瘤切除手术的结合可降低手术难度,减少病患感染风险,缩短治疗周期。PDT-化疗协同治疗须采用纳米平台共同负载光敏剂和化疗药物,或将化疗药物直接负载于纳米光敏剂上。当到达靶点后,光敏剂在光辐照下产生ROS,而化疗药物通过肿瘤微环境刺激响应得到释放。PDT-化疗协同治疗的优点之一是增加肿瘤细胞对PDT所产生ROS的细胞毒性敏感度,从而在较低剂量下得到有效治疗,以抑制高剂量药物产生的不良副作用。此外,化疗药物的外排效应对治疗效果产生负面影响,该效应涉及蛋白在PDT-化疗协同治疗中由ROS导致的失活,可达到可观的化疗药物利用率。因此,PDT-化疗协同治疗保留了病灶选择性好以及治疗效率高的优势。PDT-放射疗法协同治疗虽然降低了PDT的精准度,但三维适形放疗等技术的出现为提高协同治疗精度提供了可能。在PDT-放疗协同治疗中,由于两种模式激发设备的不同,治疗无法同时进行,这就提高了治疗过程的复杂性。然而,在X射线-PDT中,由于光敏剂中含有X射线换能器,将X射线光子转换为光敏剂可吸收的光子,实现PDT和放疗同时进行。此外,研究表明,PDT-放疗协同疗法中光敏剂与重金属元素结合有利于增强放疗效果,但其对患者的伤害程度有待评估。PTT是与PDT进行协同治疗的最常用疗法,二者的激发源均为光源,且皆落在NIR区域(PDT光源的波长约为650 nm, PTT光源的波长约为810 nm),但传统PDT-PTT协同治疗仍需两个不同发光波长的激光器分别激发,这就增加了治疗装置设计和操作的复杂性。解决该问题的最直接方法是同时利用PDT和PTT的重叠吸收光谱区域,采用单个落于该区域的激发光。在PTT-PDT协同治疗中,所使用的敏化剂吸收入射NIR光子产生ROS,同时将NIR由光能转化为热能,产生过高的热量来杀伤病灶细胞。该过程中,由PTT诱导的热效应除了具有增强抑癌作用,还加速瘤内血液循环,改善PDT中的氧供应。在PDT-免疫疗法协同治疗中,主要由PDT造成肿瘤组织损伤,诱导炎症反应,进而协同免疫疗法发挥抗肿瘤效应。具有细胞毒性的T细胞在炎症反应中被激活并转运到靶点位置,杀伤肿瘤细胞。在PDT-免疫疗法协同治疗中,必需共同使用免疫佐剂与光敏剂。与单一的免疫治疗相比,PDT-免疫协同疗法克服了传统疗法对肿瘤有限治疗的局限,发挥了更好的防复发、抗转移作用。PDT-MHT协同治疗采用Fe3O4和γ-Fe2O3等磁性纳米粒子与MHT装置所产生的交变磁场相互作用。磁性纳米粒子由于兼具药物载体与外磁场可导等特性,已被应用于PDT的精准给药。因此,PDT-MHT协同治疗同时实现了精准给药与协同效应,达到了高效抗肿瘤效果。PDT-SDT协同疗法,即声光动力疗法,由PDT的光源和SDT的声源引发。SDT是PDT的衍生疗法,通过超声波激发声敏剂产生ROS。声动力学的ROS产生机制尚未明确,但高温热解和基于空化效应的声致发光被广泛认为是最重要的作用机制。包括玫瑰红在内的部分传统有机光敏剂,兼具光子和超声波双重响应性。SDT-PDT协同治疗不仅发挥了PDT高效性,还充分利用了超声波的强穿透能力,从而有效提高治疗深度。

为了进一步探索PDT协同治疗的效率,三模态甚至是更多模态,其中包括PDT/放疗/化疗[45]、PDT/光热/光免疫治疗[46]、PDT/光热/化疗[47]、PDT/化疗/免疫治疗[48]、PDT/光热/放疗[49]、PDT/磁热疗/光热/化疗[50]等的协同治疗已有报道。在PDT协同治疗中,放疗、化疗和PTT是应用最为普遍的协同疗法,这是因为这3种疗法在技术上相对成熟,疗效评估中量效关系明确。免疫疗法具有独特、无可替代的抗肿瘤复发和转移功能,其在PDT协同治疗中的作用备受关注,也是近年来发展的一个重要方向。

6 量效评估

临床研究结果表明:在相同光敏剂剂量(按患者的体重给药)、给药-照光时间间隔、光通量密度(mW/cm2)和治疗时间的情况下,PDT疗效往往因为患者的个体差异而呈现显著差异[51-52]。除了上述剂量参数,PDT疗效还受治疗前、中、后的靶组织光学特性、组织微环境、血流速度、光敏剂在体分布及其光漂白、治疗光在体分布、1O2产量,以及组织生物响应等剂量参数的影响。随着基础研究的不断深入和临床应用的广泛开展,如何精确量化PDT剂量,并根据患者的个体差异进行PDT剂量的实时监测、调整和优化已成为亟待解决的挑战性难题[53-54]。如表3所示,Wilson等[55]把PDT剂量方法分为显式剂量法、隐式剂量法、生物响应剂量法和直接剂量法,这种分类方法至今仍被沿用。在显式剂量法中,动态定量监测在体光敏剂浓度及分布、光在治疗靶组织中的能量分布,以及血氧饱和度是精确计算剂量并预测疗效的前提。由于这三个剂量参数之间的相互作用和影响,难以通过监测某个单一参数计算剂量,因此开发多通道监测系统是未来的发展趋势。同时,通过动态监测光敏剂的光漂白特性又可实现隐式剂量计算。在此基础上,还可以通过构建光动力反应的数学模型获得ROS(含1O2)的产量,实现对疗效关系的定量评估。生物响应剂量法在临床PDT中重点关注的是血流速度和血氧饱和度的变化,以及血管的收缩封闭情况,特别适合于血管靶向PDT(V-PDT)的剂量评估。直接剂量法的最大优点在于能克服其他剂量法中光敏剂、光和氧分子,以及组织微环境等参数之间的相互复杂关系的影响,研究光敏化1O2产量与Ⅱ-PDT 疗效之间的量效关系。

表3所示,高光谱成像、光学相干断层成像(OCT)、光声成像测量和1O2发光成像等先进光学成像技术已被成功应用于监测PDT剂量参数,由原来的单点/逐点信号采集发展为2D成像。同时,这些成像技术的灵敏度、分辨率、视场和速度等性能均得到了提升,为临床转化应用奠定了坚实的基础。以1O2发光成像为例,本课题组开发出活体1O2发光成像系统(光学畸变<0.1%,成像分辨率为30 μm),在国际上首次获得了活体小鼠鼠背皮窗模型微血管中1O2发光的空间分辨图像,并初步建立了1O2发光与血管收缩率之间的量效关系[56]。Davis的课题组研发了一种高信噪比、低串扰的新剂量计系统,用于PDT连续光照下同时测量光敏剂和1O2,首次利用连续激光辐照和多光谱拟合信号,实现了PDT活体试验的1O2定量检测,建立了1O2产量与肿瘤生长速率相对变化的关联性[57]。以上光学监测技术大多局限在动物模型研究阶段,获得临床实际应用的相对较少[58-61]。在临床应用方面,Betrouni等[62]通过获得超声前列腺癌病灶的超声图像,并结合光在组织中的分布模型对TOOKAD®介导PDT的辐照光源强度及分布进行剂量优化,预测疗效与临床实现疗效误差在10%以内。Ahn等[63]研究了PDT治疗头颈部肿瘤时,靶组织中血氧饱和度(stO2)和血容量(tHb)对疗效的影响,结果表明:与血容量相比,血氧饱和度是直接决定疗效的关键因素。Ong 等[64]在开展大量动物模型试验的基础上,通过临床监测患者病灶中的血流、光能量分布、氧浓度以及光敏剂浓度,定量得到PDT毒性物质ROS的产量,这种方法已被应用于临床胸膜间皮瘤剂量评估。临床研究表明,在给定光敏剂给药剂量(2 mg/kg b.w.)和治疗光剂量(60 J/cm2)情况下,PDT剂量在相同患者之间和不同患者之间的差异分别高达2.9倍和8.3倍。在另外一组研究中,他们还发现ROS产量在7个不同患者以及同一患者的不同部位之间存在显著差异[65]。此外,他们还利用近红外导航系统对PDT治疗胸膜间皮瘤时的光分布进行优化,光在胸腔内均匀分布的标准偏差可控制在10%以内[66]。因此,开展剂量监测是实现个性化PDT精准治疗的理论基础。

图7所示,组织氧含量将被组织微环境参量所替代,成为PDT的三大关键要素之一。尽管组织氧含量是光动力反应过程最直接的剂量参数,但靶组织的光学特性参数(含吸收系数、散射系数和各向散射因子)、血管管径及分布(脱氧血红蛋白和氧合血红蛋白)、pH值、GSH含量等都间接地影响组织氧含量和光敏化过程中的1O2产量,其中组织光学特性参数还决定着光敏剂和治疗光的在体分布。因此,一方面可根据组织微环境开发靶向性光敏剂,另一方面可以通过利用丁硫氨酸亚砜胺降低肿瘤中GSH浓度,以提高1O2产量,进而增强PDT疗效。

图 7. PDT的三大关键要素

Fig. 7. Three key components in PDT

下载图片 查看所有图片

表 3. 监测PDT剂量参数的光学技术

Table 3. Optical techniques for monitoring dosimetric parameters in PDT

Dosimetry modelDosimetric factorOptical technique
Explicit dosimetryPhotosensitizerAbsorbanceAbsorption spectroscopy
Concentration/distributionFluorescence spectroscopy
Hyperspectral imaging
Irradiation lightFluence rateFlat and isotropic detectors
Fluence
Molecule oxygenOxygen saturationDiffuse optical spectroscopy
Spatial frequency domain imaging
Oxygen partial pressureOxygen-sensitive probes
Implicit dosimetryPhotosensitizer photobleachingConcentration/distributionFluorescence spectroscopy
Delayed fluorescence
Biological responseCell deathApoptosisMolecular biomarkers
Necrosis
Paraptosis
Autophagy
Vascular damageBlood flowLaser Doppler flowmetry
Laser Doppler imaging
Laser speckle imaging
Doppler OCT
Photoacoustic imaging
Blood vessel diameterOptical coherence tomography
Spatial frequency domain imaging
Reflectance confocal microscopy
Immune modulationMolecular biomarkers
Other indicatorNADH fluorescenceFluorescence lifetime imaging
Direct dosimetrySinglet oxygenConcentration/distribution,Time-resolved luminescence
Chemical probes

查看所有表

基于对剂量参数的时空分辨定量测量,如何实现对PDT 靶向作用精度、强度和深度的精准调控是实现个性化精准PDT的前提。例如,1O2发光成像因无法甄别1O2发光的动力学信息而缺乏对信号来源的直接验证,本课题组正在开发时间分辨扫描成像和稳态宽场成像联合的时空分辨1O2发光成像系统。该系统有望在快速获取高分辨1O2发光图像的同时,同步获得感兴趣区域(ROI)的1O2发光信号的动力学信息(包括光敏剂的三重态寿命和1O2寿命),为建立1O2-PDT剂量学提供理论参考。

7 临床应用

图8所示,根据不同治疗病种,PDT分为肿瘤靶向[67]、血管靶向[68]和微生物靶向3种治疗类型,其中微生物靶向是PDT未来拓展应用的重点领域。

图 8. 临床PDT治疗病种

Fig. 8. Clinical PDT treatment for different diseases

下载图片 查看所有图片

7.3 肿瘤靶向

表1图8所示,PDT已被成功应用于治疗皮肤癌、头颈部肿瘤、脑部肿瘤、口腔癌、舌癌、鼻咽癌、消化系统肿瘤(含食管癌、胃癌、结直肠癌、肝癌、胆管癌和胰腺癌等)、肺癌、乳腺癌、膀胱癌、骨肉肿瘤等,从而确立了PDT在临床肿瘤治疗中的作用[69-70]。PDT由于具有微创、产生瘢痕小、不易损害皮肤外观、美容效果好等优点,特别适用于肿瘤多发、病灶区域大、无法手术,或是在睑缘、鼻缘等外科手术难点部位的治疗。以皮肤癌及其癌前病变的治疗为例,对于日光性角化病、鲍温病等浅表肿瘤,可局部涂抹光敏剂ALA和MAL开展PDT治疗;对于鳞状细胞癌、乳腺佩吉特(Paget)病等深部肿瘤,可通过静脉给药方式,开展HpD-PDT治疗。在内腔和腔道的肿瘤中,PDT也显示出良好的临床疗效,并具有保护器官及其功能的微创疗效。此外,PDT对早期肿瘤具有根治疗效,对中、晚期肿瘤具有姑息治疗的作用。肺癌是PDT最早应用的适应症之一,PDT不仅可用于治疗不适合手术的早期肺癌患者,还可用于手术前治疗以缩小病灶,减少手术切除范围。胆管癌对化疗和放疗不敏感,且发病具有隐蔽性,通常确诊时已无法进行根治手术,PDT成为不可切除胆管癌姑息治疗的一种选择。此外,针对膀胱癌术后复发率高的问题,开展膀胱镜下电切除术协同PDT治疗,能有效地清除残留癌细胞,缓解血尿等症状,降低膀胱癌的复发率。随着新型光敏剂的问世、光源及其传输技术的发展,以及内窥镜的普及,PDT的临床应用范围将继续拓展。同时,PDT将发展成为治疗肿瘤的一种常规方法,获得临床广泛应用。

7.4 血管靶向

不同于肿瘤靶向,V-PDT通过血管内的光敏剂在光敏化过程中所产生的1O2等ROS造成血管损伤,血管损伤过程中会产生、释放、聚集或激活凝血酶(prothrombin -thrombin),导致血凝、血栓和血管封闭等,引起病灶供氧和运氧不足,从而导致细胞死亡和组织坏死[71-72]。血管靶向已成为 PDT的三大临床应用领域之一,目前已开展治疗的血管性疾病包括:1)皮肤微血管疾病,如PWS,它是一种先天性、良性血管畸形,好发于面颈部。20世纪90年代初顾瑛提出利用V-PDT治疗PWS,经过近30年的临床实践,证明了该疗法的安全性和有效性,目前已成为治疗PWS的首选疗法。2)眼底微血管疾病,如年龄相关性黄斑变性(AMD),脉络膜新生血管是AMD的典型临床表现和致盲原因,临床治疗难度大。与传统激光光凝疗法相比,V-PDT对AMD不仅疗效好,而且对病灶周围的正常黄斑组织损伤小。3)消化道黏膜微血管疾病,包括食道静脉曲张、胃窦血管扩张、放射性胃肠炎等。这类疾病往往容易导致患者出现严重的贫血,且由于病变范围弥散,治疗非常棘手。V-PDT因选择性好、创伤小、康复周期短且疗效安全持久,在治疗黏膜微血管疾病方面已显示其独特优势。4)血管特别丰富的肿瘤,如老年男性常见的前列腺癌。由以色列魏茨曼科学研究院和以色列Steba生物技术公司联合研发的TOOKAD®已被欧洲药品管理局批准用于治疗前列腺癌,且疗效显著。

7.5 微生物靶向

病原微生物的多样性和快速变异使其治疗面临着巨大挑战,其中滥用抗生素及其引发的耐药问题尤为突出。微生物靶向PDT(aPDT)作用于微生物的靶点主要在细胞壁和细胞膜,具有多靶点的杀伤作用,不易产生耐药,已成为临床治疗中抗细菌、抗病毒和抗真菌的有效方法[73-74]。aPDT对微生物的杀伤作用主要有两种机制:1)ROS(含1O2)破坏细胞壁,导致细胞内物质泄漏或使膜转运系统及相关蛋白酶失活;2)ROS不可逆地损伤微生物遗传物质DNA的碱基和糖组分,从而破坏DNA的双链结构,干扰正常的增殖和生理代谢。

相对于PDT在肿瘤靶向和血管靶向中的临床应用,微生物靶向治疗还处于起步阶段。临床研究表明,微生物靶向治疗的抗菌谱非常广,并在多种细菌、病毒及真菌感染方面展示出良好的应用前景。目前,PDT抗细菌的临床适应症包括伤口感染、慢性溃疡感染、痤疮以及牙周疾病等。值得关注的是,细菌结构差异导致不同细菌对PDT敏感性存在显著差异。为了最大化PDT抗菌效率,建立PDT抗不同菌种的剂量学是未来的研究重点。病毒作为最小致病因子,具有强感染性,是人类传染病的重要来源。已知高危型人乳头状瘤病毒(HPV)是引起女性下生殖道(宫颈、阴道、外阴)肿瘤及其癌前病变的重要病因,随着高危型HPV感染的低龄化,对高效、保护器官功能的治疗技术提出了新的需求,而PDT具有的治疗优势正符合这个需求,因此,PDT在抗高危型HPV中得到了越来越广泛的应用。在引起人类皮肤和黏膜感染的低危型HPV所致的尖锐湿疣感染中,由于PDT不仅能清除临床感染病灶,对肉眼不可见的亚临床感染也具有清除作用,与传统手术治疗相比,PDT能有效降低其复发概率。在体表、体腔真菌感染性疾病治疗方面,PDT的优势初步显现,Qiu等[75]采用PDT治疗2例食管早癌合并食管广泛白色念珠菌感染的患者,经过1~2次PDT治疗后患者已经痊愈,其食管的结构和功能也得到了很好的保护。口咽/食管念珠菌病是人类免疫缺陷病毒(HIV)患者最常见的机会性感染。采用亚甲基蓝aPDT治疗HIV患者合并的口咽/食管念珠菌病已取得了令人较为满意的临床疗效[76]。此外,PDT在角膜、皮肤、口腔、指甲等真菌感染疾病治疗中也得到初步应用。由于各种真菌含有丰富的色素,可能会减弱光敏剂对辐照光的有效吸收,因此选用的光敏剂最大吸收峰应避开真菌色素的吸收峰。

自开展临床应用以来,PDT在国内越来越多的医院得到了应用及推广。中国人民解放军总医院开创了V-PDT治疗PWS的先河,并长期开展PDT治疗体表、体腔肿瘤,如皮肤肿瘤和食管癌等;近年来,还成功开展V-PDT治疗消化道微血管出血性病变,aPDT治疗高危型HPV感染和食管真菌感染等。哈尔滨医科大学附属第二医院开展PDT治疗脑胶质瘤。首都医科大学附属北京同仁医院眼科中心开展PDT治疗老年眼底黄斑变性。应急总医院开展PDT治疗呼吸道肿瘤等。上海市皮肤病医院开展PDT治疗皮肤肿瘤、尖锐湿疣和中重度痤疮等。南方医科大学中西医结合医院利用PDT治疗头颈部和消化道肿瘤、鼻咽癌以及乳腺外佩吉特病等。中国人民解放军南部战区总医院基于LED开展PDT治疗皮肤肿瘤和PWS。

8 挑战与展望

尽管PDT进入正式临床许可应用已近30年,但仍然面临诸多挑战:1)现有临床许可光敏剂价格居高不下,且药效特性不尽理想;2)PDT在离体细胞和活体动物试验中所得到的结论,难以直接、快速地实现临床转化应用;3)由于患者之间存在个体差异,以及治疗病灶组织内部具有各向异性,难以揭示光敏化生物作用机制和建立定量评估PDT疗效的量效关系;4)缺乏明确的量效关系,极大地限制了PDT的临床应用推广。

图9所示,研发集诊断、治疗和监测功能于一体的新型纳米光敏剂是未来的首要任务。在光源方面,可穿戴的柔性LED是治疗浅表病灶的理想PDT光源;对于体内或腔内病灶,体内发光光源(如生物发光、化学发光和切伦科夫发光)等辐照源的应用,不仅可以突破治疗深度,而且可以提高治疗的精准性和安全性。组织微环境作为PDT的关键要素,一方面可根据其特性开发特异性强的靶向光敏剂,另一方面,可通过其他方法降低治疗过程中所产生1O2的淬灭效应,进而提高PDT疗效。

图 9. 监测PDT治疗前、中和后的剂量参数

Fig. 9. Monitoring dosimetric parameters for pre-,during-,and post-PDT

下载图片 查看所有图片

为了监测Ⅱ型PDT治疗前、中、后的靶组织光学特性、组织微环境、血流速度、光敏剂在体分布及其光漂白、治疗光的在体分布、1O2产量,以及组织生物学响应等剂量参数,亟待研发多模态时空分辨光学成像平台。在此基础上,阐明光敏剂剂量、光剂量和组织微环境对光敏化1O2产量的定量影响,进而优化和调控治疗方案以提高PDT疗效。在临床应用中,建立1O2-PDT剂量学是实现临床PDT个性化和精准治疗的理论基础。

参考文献

[1] Li B H, Lin L S, Lin H Y, et al. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy[J]. Journal of Biophotonics, 2016, 9(11/12): 1314-1325.

[2] Okunaka T, Usuda J, Ichinose S, et al. A possible relationship between the anti-cancer potency of photodynamic therapy using the novel photosensitizer ATX-s10-Na(Ⅱ) and expression of the vascular endothelial growth factor in vivo[J]. Oncology Reports, 2007, 18(3): 679-683.

[3] Chen J J, Hou L J, Zheng K, et al. Blood distribution and plasma protein binding of PHOTOCYANINE: a promising phthalocyanine photosensitizer inphase Ⅱ clinical trials[J]. European Journal of Pharmaceutical Sciences, 2020, 153: 105491.

[4] Lin L, Song X J, Dong X C, et al. Nano-photosensitizers for enhanced photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 2021, 36: 102597.

[5] Pham T C, Nguyen V N, Choi Y, et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy[J]. Chemical Reviews, 2021, 121(21): 13454-13619.

[6] Liu X, Li R, Zhou Y, et al. An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy[J]. Journal of Colloid and Interface Science, 2022, 608(2): 1543-1552.

[7] Ge J C, Lan M H, Zhou B J, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nature Communications, 2014, 5: 4596.

[8] Kenry , Tang B Z, Liu B. Catalyst: aggregation-induced emission: how far have we come, and where are we going next?[J]. Chem, 2020, 6(6): 1195-1198.

[9] Xu W J, Qian J M, Hou G H, et al. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer[J]. Acta Biomaterialia, 2019, 83: 400-413.

[10] Wang P, Shi Y H, Zhang S C, et al. Hydrogen peroxide responsive iron-based nanoplatform for multimodal imaging-guided cancer therapy[J]. Small, 2019, 15(4): e1803791.

[11] Alzeibak R, Mishchenko T A, Shilyagina N Y, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future[J]. Journal for Immunotherapy of Cancer, 2021, 9(1): e001926.

[12] Zhang X, Hou Y Q, Xiao X, et al. Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: from molecular structure design to photophysical properties and applications[J]. Coordination Chemistry Reviews, 2020, 417: 213371.

[13] Ryan R T, Stevens K C, Calabro R, et al. Bis-tridentate N-heterocyclic carbene Ru(Ⅱ) complexes are promising new agents for photodynamic therapy[J]. Inorganic Chemistry, 2020, 59(13): 8882-8892.

[14] Tang Q Y, Cheng Z J, Yang N, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy[J]. Biomaterials, 2019, 205: 1-10.

[15] Yang X, Yang Y, Gao F, et al. Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors[J]. Nano Letters, 2019, 19(7): 4334-4342.

[16] Yu Z Z, Zhou P, Pan W, et al. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis[J]. Nature Communications, 2018, 9: 5044.

[17] Xu S T, Zhu X Y, Zhang C, et al. Oxygen and Pt(Ⅱ) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor[J]. Nature Communications, 2018, 9: 2053.

[18] Zhao X Z, Liu J P, Fan J L, et al. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application[J]. Chemical Society Reviews, 2021, 50(6): 4185-4219.

[19] 林立, 李步洪. 发光二极管在光动力疗法中的应用进展[J]. 激光与光电子学进展, 2020, 57(15): 150001.

    Lin L, Li B H. Application progress of light-emitting diode for photodynamic therapy[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150001.

[20] Xiang M H, Zhou Q M, Shi Z H, et al. A review of light sources and enhanced targeting for photodynamic therapy[J]. Current Medicinal Chemistry, 2021, 28(31): 6437-6457.

[21] Xu X Q, An H J, Zhang D L, et al. A self-illuminating nanoparticle for inflammation imaging and cancer therapy[J]. Science Advances, 2019, 5(1): eaat2953.

[22] Kotagiri N, Laforest R, Achilefu S. Reply to ‘Is Cherenkov luminescence bright enough for photodynamic therapy? ’[J]. Nature Nanotechnology, 2018, 13(5): 354-355.

[23] Kim A, Zhou J W, Samaddar S, et al. An implantable ultrasonically-powered micro-light-source (μLight) for photodynamic therapy[J]. Scientific Reports, 2019, 9: 1395.

[24] Wang G D, Nguyen H T, Chen H M, et al. X-ray induced photodynamic therapy: a combination of radiotherapy and photodynamic therapy[J]. Theranostics, 2016, 6(13): 2295-2305.

[25] Kawamura K, Hikosou D, Inui A, et al. Ultrasonic activation of water-soluble Au25(SR)18 nanoclusters for singlet oxygen production[J]. The Journal of Physical Chemistry C, 2019, 123(43): 26644-26652.

[26] Kamkaew A, Cheng L, Goel S, et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26630-26637.

[27] Kim S, Jo H, Jeon M, et al. Luciferase-Rose Bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer[J]. Chemical Communications, 2017, 53(33): 4569-4572.

[28] Kamanli A F, Çetinel G. Radiation mode and tissue thickness impact on singlet oxygen dosimetry methods for antimicrobial photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 2021, 36: 102483.

[29] Wei F M, Rees T W, Liao X X, et al. Oxygen self-sufficient photodynamic therapy[J]. Coordination Chemistry Reviews, 2021, 432: 213714.

[30] Cheng Y H, Cheng H, Jiang C X, et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J]. Nature Communications, 2015, 6: 8785.

[31] Wang P Y, Li X M, Yao C, et al. Orthogonal near-infrared upconversion co-regulated site-specific O2 delivery and photodynamic therapy for hypoxia tumor by using red blood cell microcarriers[J]. Biomaterials, 2017, 125: 90-100.

[32] Yuan P, Ruan Z, Jiang W, et al. Oxygen self-sufficient fluorinated polypeptide nanoparticles for NIR imaging-guided enhanced photodynamic therapy[J]. Journal of Materials Chemistry B, 2018, 6(15): 2323-2331.

[33] Gao S T, Zheng P L, Li Z H, et al. Biomimetic O2-evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor[J]. Biomaterials, 2018, 178: 83-94.

[34] Zhu W W, Dong Z L, Fu T T, et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy[J]. Advanced Functional Materials, 2016, 26(30): 5490-5498.

[35] Huang C C, Chia W T, Chung M F, et al. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy[J]. Journal of the American Chemical Society, 2016, 138(16): 5222-5225.

[36] Chen H C, Tian J W, He W J, et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]. Journal of the American Chemical Society, 2015, 137(4): 1539-1547.

[37] Huo M F, Wang L Y, Zhang L L, et al. Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy[J]. Angewandte Chemie, 2020, 59(5): 1906-1913.

[38] Ji Y, Lu F, Hu W B, et al. Tandem activated photodynamic and chemotherapy: using pH-sensitive nanosystems to realize different tumour distributions of photosensitizer/prodrug for amplified combination therapy[J]. Biomaterials, 2019, 219: 119393.

[39] Cui D, Huang J G, Zhen X, et al. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy[J]. Angewandte Chemie, 2019, 58(18): 5920-5924.

[40] Xia D L, Xu P P, Luo X Y, et al. Overcoming hypoxia by multistage nanoparticle delivery system to inhibit mitochondrial respiration for photodynamic therapy[J]. Advanced Functional Materials, 2019, 29(13): 1807294.

[41] Chen D P, Yu Q, Huang X, et al. A highly-efficient type Ⅰ photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy[J]. Small, 2020, 16(23): e2001059.

[42] Bolze F, Jenni S, Sour A, et al. Molecular photosensitisers for two-photon photodynamic therapy[J]. Chemical Communications, 2017, 53(96): 12857-12877.

[43] Zhu J W, Jiao A H, Li Q Z, et al. Mitochondrial Ca2+-overloading by oxygen/glutathione depletion-boosted photodynamic therapy based on a CaCO3 nanoplatform for tumor synergistic therapy[J]. Acta Biomaterialia, 2022, 137: 252-261.

[44] Liu C H, Cao Y, Cheng Y R, et al. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy[J]. Nature Communications, 2020, 11: 1735.

[45] Yano T, Muto M, Minashi K, et al. Long-term results of salvage photodynamic therapy for patients with local failure after chemoradiotherapy for esophageal squamous cell carcinoma[J]. Endoscopy, 2011, 43(8): 657-663.

[46] Yang J X, Hou M F, Sun W S, et al. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse[J]. Advanced Science, 2020, 7(16): 2001088.

[47] Ma S H, Xie J, Wang L, et al. Hetero-core-shell BiNS-Fe@Fe as a potential theranostic nanoplatform for multimodal imaging-guided simultaneous photothermal-photodynamic and chemodynamic treatment[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 10728-10740.

[48] He C B, Duan X P, Guo N N, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy[J]. Nature Communications, 2016, 7: 12499.

[49] Liu T T, Song Y, Huang Z B, et al. Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid metal nanoparticles on liver cancer[J]. Colloids and Surfaces B, 2021, 207: 112023.

[50] Wo F J, Xu R J, Shao Y X, et al. A multimodal system with synergistic effects of magneto-mechanical, photothermal, photodynamic and chemo therapies of cancer in graphene-quantum dot-coated hollow magnetic nanospheres[J]. Theranostics, 2016, 6(4): 485-500.

[51] Qiu Z H, Yao G P, Chen D F, et al. Determination of optical and microvascular parameters of port wine stains using diffuse reflectance spectroscopy[J]. Advances in Experimental Medicine and Biology, 2016, 923: 359-365.

[52] Teng X, Li F, Lu C, et al. Carbon dot-assisted luminescence of singlet oxygen: the generation dynamics but not the cumulative amount of singlet oxygen is responsible for the photodynamic therapy efficacy[J]. Nanoscale Horizons, 2020, 5(6): 978-985.

[53] 李文博, 沈毅, 李步洪. 光学成像技术在光动力剂量监测中的应用进展[J]. 中国激光, 2020, 47(2): 0207006.

    Li W B, Shen Y, Li B H. Advances in optical imaging for monitoring photodynamic therapy dosimetry[J]. Chinese Journal of Lasers, 2020, 47(2): 0207006.

[54] Xu X L, Lin L S, Li B H. Automatic protocol for quantifying the vasoconstriction in blood vessel images[J]. Biomedical Optics Express, 2020, 11(4): 2122-2136.

[55] Wilson B C, Patterson M S, Lilge L. Implicit and explicit dosimetry in photodynamic therapy: a new paradigm[J]. Lasers in Medical Science, 1997, 12(3): 182-199.

[56] Lin L S, Lin H Y, Shen Y, et al. Singlet oxygen luminescence image in blood vessels during vascular-targeted photodynamic therapy[J]. Photochemistry and Photobiology, 2020, 96(3): 646-651.

[57] Moritz T J, Zhao Y B, Hinds M F, et al. Multispectral singlet oxygen and photosensitizer luminescence dosimeter for continuous photodynamic therapy dose assessment during treatment[J]. Journal of Biomedical Optics, 2020, 25: 063810.

[58] Pogue B W, Elliott J T, Kanick S C, et al. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success[J]. Physics in Medicine and Biology, 2016, 61(7): R57-R89.

[59] Hackbarth S, Islam W, Fang J, et al. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors[J]. Photochemical & Photobiological Sciences, 2019, 18(6): 1304-1314.

[60] Morozov P, Lukina M, Shirmanova M, et al. Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting[J]. Optics Letters, 2021, 46(6): 1217-1220.

[61] Zhao Y B, Moritz T, Hinds M F, et al. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy[J]. Journal of Biophotonics, 2021, 14(11): e202100088.

[62] Betrouni N, Boukris S, Benzaghou F. Vascular targeted photodynamic therapy with TOOKAD® Soluble (WST11) in localized prostate cancer: efficiency of automatic pre-treatment planning[J]. Lasers in Medical Science, 2017, 32(6): 1301-1307.

[63] Ahn P H, Finlay J C, Gallagher-Colombo S M, et al. Lesion oxygenation associates with clinical outcomes in premalignant and early stage head and neck tumors treated on a phase 1 trial of photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 2018, 21: 28-35.

[64] Ong Y H, Kim M M, Finlay J C, et al. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)[J]. Physics in Medicine and Biology, 2017, 63(1): 015031.

[65] Kim M M, Zhu T C, Ong Y H, et al. Infrared navigation system for light dosimetry during pleural photodynamic therapy[J]. Physics in Medicine and Biology, 2020, 65(7): 075006.

[66] Ong Y H, Kim M M, Dimofte A, et al. Reactive oxygen species explicit dosimetry for Photofrin-mediated pleural photodynamic therapy[J]. Photochemistry and Photobiology., 2020, 96(2): 340-348.

[67] Li X S, Lovell J F, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nature Reviews Clinical Oncology, 2020, 17(11): 657-674.

[68] Shen Y, Liang F Q, Niu Y H, et al. Monitoring vascular targeted PDT response with multimode optical imaging[J]. Proceedings of SPIE, 2019, 10879: 1087906.

[69] Dolmans D E J G J, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3(5): 380-387.

[70] Li G, Wang Q, Liu J X, et al. Innovative strategies for enhanced tumor photodynamic therapy[J]. Journal of Materials Chemistry B, 2021, 9(36): 7347-7370.

[71] Li L, Liu L, Wang Y, et al. Simulation of spatial and temporal distribution of singlet oxygen in port wine stain during vascular targeted photodynamic therapy[J]. Proceedings of SPIE, 2019, 11190: 111902D.

[72] Xu X L, Shen Y, Lin L, et al. Multi-step deep neural network for identifying subfascial vessels in a dorsal skinfold window chamber model[J]. Biomedical Optics Express, 2021, 13(1): 426-437.

[73] Cieplik F, Deng D M, Crielaard W, et al. Antimicrobial photodynamic therapy: what we know and what we don’t[J]. Critical Reviews in Microbiology, 2018, 44(5): 571-589.

[74] Gilaberte Y, Rezusta A, Juarranz A, et al. Editorial: antimicrobial photodynamic therapy: a new paradigm in the fight against infections[J]. Frontiers in Medicine, 2021, 8: 788888.

[75] Qiu H X, Mao Y P, Gu Y, et al. The potential of photodynamic therapy to treat esophageal candidiasis coexisting with esophageal cancer[J]. Journal of Photochemistry and Photobiology B, 2014, 130: 305-309.

[76] Zeng B S, Zeng B Y, Hung C M, et al. Efficacy and acceptability of different anti-fungal interventions in oropharyngeal or esophageal candidiasis in HIV co-infected adults: a pilot network meta-analysis[J]. Expert Review of Anti-Infective Therapy, 2021, 19(11): 1469-1479.

李步洪, 陈天龙, 林立, 陈兵, 邱海霞, 顾瑛. 光动力疗法基础研究与临床应用的新进展[J]. 中国激光, 2022, 49(5): 0507101. Buhong Li, Tianlong Chen, Li Lin, Bing Chen, Haixia Qiu, Ying Gu. Recent Progress in Photodynamic Therapy: From Fundamental Research to Clinical Applications[J]. Chinese Journal of Lasers, 2022, 49(5): 0507101.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!