中国激光, 2024, 51 (8): 0811004, 网络出版: 2024-03-29  

基于标定直接吸收光谱方法的近红外乙烯检测【增强内容出版】

Near-infrared C2H4 Detection Based on Calibrated Direct Absorption Spectroscopy
作者单位
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所光子器件与材料安徽省重点实验室,安徽 合肥 230031
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
4 国防科技大学先进激光技术安徽省实验室,安徽 合肥 230037
5 国家管网集团科学技术研究总院分公司,河北 廊坊 065000
摘要
实现乙烯气体(C2H4)实时在线精确检测对石油化工、煤矿等行业安全具有重要意义,但是C2H4在近红外波段的谱线强度信息不明确,具有谱带吸收特征,且与CH4有明显的混叠干扰,因此对其浓度进行精确检测是目前激光吸收光谱测量面临的共性技术难题。将波长调制光谱中的标定方法与直接吸收光谱相结合,提出了一种适用于C2H4气体检测的标定直接吸收光谱法(CDAS)。该方法不需要激光吸收光谱反演过程中的确切谱线强度信息,并克服了波长调制光谱在测量过程中出现的非线性效应。为了避免特定工况(如煤矿)中CH4的干扰,实验装置采用了高精度压强控制系统,并且在100 mbar(1 bar=105 Pa)稳定压强下实现了CH4和C2H4混叠光谱的分离。实验过程中对1626 nm附近的CH4和C2H4仿真和实测吸收光谱进行了分析,确定了C2H4的标定光谱范围,进而验证了该方法在体积分数低于100×10-6的范围内,对C2H4气体的检测误差不超过-1.47×10-6,并且测量体积分数与标准体积分数之间的线性拟合优度达到了0.999。对体积分数为10×10-6的C2H4直接吸收光谱进行分析,以1倍信噪比对应的浓度作为检测下限进行等效计算,得到检测下限为1.38×10-6。在Allan方差分析中,积分时间为77 s时检测精度达到了0.04×10-6。以上实验结果充分说明了标定直接吸收光谱法能够在近红外波段实现C2H4的精确检测,并为此类气体的检测提供了一种新思路。
Abstract
Objective

The real-time detection of ethylene (C2H4) is significant for the safety of coal mines, the petrochemical industry, and other industries. Currently, the mainstream methods for C2H4 gas concentration detection include gas chromatography and electrochemical sensors. Gas chromatography can separate multicomponent gases and avoid mutual interference. However, this method requires long-term preheating and frequent calibration, making it difficult to complete real-time measurements in industrial scenarios. Although electrochemical sensors have the advantages of small size and low cost, their selectivity is poor, and it is difficult to avoid cross-interference. In contrast, tunable diode laser absorption spectroscopy (TDLAS) has the advantages of real-time measurements, high sensitivity, and strong selectivity. They are widely used in industrial gas detection and environmental monitoring. Unfortunately, there are still some difficulties in real-time high-precision detection of C2H4. First, information regarding the absorption line of C2H4 in the near-infrared band cannot be obtained. Second, the absorption spectrum of C2H4 is described as complex band absorption. Third, the absorption spectra of C2H4 and CH4 in the near-infrared band interfere with each other. Therefore, real-time high-precision detection of C2H4 is a common problem that urgently needs to be addressed.

Methods

First, the gas concentration can be calculated using traditional direct absorption spectroscopy if the accurate parameters of the absorption line are known. However, for C2H4, it does not contain an absorption line intensity within the near-infrared band in the HITRAN database. This results in an inability to use a calibration-free method to directly calculate the C2H4 concentration. Notably, the concentration calculation method in wavelength modulation spectroscopy does not require accurate spectral line intensity. Therefore, the calibration concept of wavelength modulation spectroscopy is applied to the direct absorption spectroscopy, forming a method named calibrated direct absorption spectroscopy. In addition, faced with the problems of the band absorption of C2H4 and the interference of CH4, a high-precision pressure control system is utilized to complete the spectral line separation under low pressure. In contrast to previous studies, it is necessary to select an appropriately calibrated spectrum in this study. Specifically, standard CH4 and C2H4 gases are measured at a pressure of 100 mbar (1 bar=105 Pa) and the corresponding direct absorption spectra are obtained. By comparing with the simulated spectrum of CH4 in the HITRAN database, the appropriate calibrated spectrum of C2H4 is determined.

Results and Discussions

Stable pressure plays a vital role in the experiments. After the pressure value stabilizes to 100 mbar, the pressure results of the continuous measurement within 1 h are collected, and the distribution of the pressure results is well fitted by a Gaussian function; the full width at half maximum is 0.008 mbar, which proves the stability of the experimental system for pressure control. The subsequent experiments are conducted at 100 mbar. Within the volume fraction of less than 100×10-6, the direct absorption spectrum signals of five sets of C2H4 are acquired and the concentration results are also calculated. The correlated coefficient of linear fitting between the result and the standard concentration is greater than 0.999, and the maximum measurement error is -1.47×10-6. In addition, a direct absorption spectrum signal of 10×10-6 C2H4 is selected for limit of detection (LoD) analysis. The peak value of the signal is 5.80×10-4, and that of the background signal is 0.80×10-4, which can be calculated to obtain a signal-to-noise ratio (SNR) of 7.25. The concentration corresponding to one SNR is defined as the LoD, and its value is 1.38×10-6. Finally, C2H4 with a volume fraction of 20×10-6 is continuously measured for 40 min, and Allan variance analysis is performed on the volume fraction results. At an integral time of 1 s, the precision of measurement for C2H4 is 0.61×10-6. As the integral time increases, the detection precision can reach 0.04×10-6.

Conclusions

To address the challenges faced in near-infrared ethylene detection, a calibrated method in wavelength modulation spectroscopy is applied to direct absorption spectroscopy, forming a new method known as calibrated direct absorption spectroscopy. An experimental device for C2H4 detection with a high-precision pressure-control system is established, and the direct absorption spectrum of C2H4 is measured at approximately 1626 nm. Based on experimental verification, the calibrated direct absorption spectroscopy method can complete the real-time detection of C2H4, overcoming the limitations of traditional direct absorption spectroscopy. We also hope to address real-time detection problems of other similar gases, which can significantly expand the application of direct absorption spectroscopy.

1 引言

煤层自然发火早期会释放C2H4气体,因此将C2H4作为煤炭发火的主要指标气体进行实时在线检测,能够提前预警并保障煤矿的生产安全1-4。除此之外,在石油化工、电力等行业对C2H4进行实时高精度检测也具有非常重要的经济价值和现实意义4-5。燃烧释放的C2H4体积分数通常为1×10-6~50×10-6,因此对C2H4气体的检测精度要求达到10-6量级6。目前常用的C2H4气体浓度检测方法包括气相色谱法、电化学传感器等1。气相色谱仪能够实现多种气体组分的分离,避免互相干扰,但是需要长时间预热和频繁标定7,难以完成工况环境下的实时测量。电化学传感器虽然具有体积小、成本低等优势,但是其选择性差,易受环境温度和湿度的影响8

激光吸收光谱技术(TDLAS)具有实时原位测量、灵敏度高、选择性强等优点9-14,已经被广泛应用于工业气体检测、环境监测、燃烧诊断等领域15-20。目前也有基于TDLAS技术实现C2H4检测的相关研究21-23。Wang等24利用多线拟合方法在1626 nm附近对波长调制光谱进行了多线拟合,并根据提取到的谱线信息实现了C2H4的浓度检测,在体积分数为100×10-6~700×10-6的范围内最大相对误差不超过2.40%。Gao等25使用1620 nm分布反馈式激光器基于差分吸收光谱在高温高压条件下实现了C2H4气体浓度和温度的同时检测,实验结果显示,当温度为900 K、压强为1 atm(1 atm=101325 Pa)时,C2H4的检测精度为19×10-6。Zou等26结合频分复用和时分复用方法,对变压器油中溶解的多组分气体进行了同时检测,其中近红外C2H4检测选择了发射波长为1626 nm的激光器,Allan方差分析证明该系统在积分时间为1 s时对C2H4的检测精度达到了0.98×10-6,但并未对二次谐波原始信号进行分析,无法获得精确的检测下限。Tanaka等5使用中心波长为3356 nm的激光器搭建了中红外C2H4检测系统,以2倍信噪比对应的C2H4浓度作为检测下限,计算得到检测下限为0.096×10-6。值得注意的是,在中红外波段对C2H4气体浓度进行检测可以达到10-6量级的检测精度,但这在近红外波段难以实现。使用中红外波段激光器虽然能够实现更低的检测下限和更高的检测精度,但是中红外激光器价格昂贵且难以与光纤耦合进行传输,导致了光路结构复杂且稳定性较差,难以在恶劣工况环境下应用27

为了实现近红外C2H4的高精度实时检测,将波长调制光谱的标定方法与直接吸收光谱法结合,提出了标定直接吸收光谱方法,并完成了C2H4检测。本文首先分析了直接吸收光谱原理公式,阐述了传统直接吸收光谱不适用于近红外C2H4浓度检测的原因。然后详细介绍了标定直接吸收光谱的实施步骤,并分析了其在参数不确定情况下进行气体浓度检测的优势。同时搭建了C2H4检测系统,在100 mbar(1 bar=105 Pa)压强条件下对1626 nm附近的CH4和C2H4直接吸收光谱进行了测量并选择了合适的标定光谱范围。最后针对C2H4检测设计和实施了系统性实验验证,并对实验结果进行了详细的分析和讨论。

2 理论分析

基于Lambert-Beer定律的激光吸收光谱技术,可以表述为待测气体对特定波长的光会产生吸收作用。吸收前的激光光强(I0)和吸收后的激光光强(It28可以表示为

ItI0=exp-STCPLϕυ=exp-αυL

式中:S(T)为温度T下的气体吸收谱线强度,单位为cm-2·atm-1C为待测气体的体积分数;LP分别为光程长度和气体压强,单位分别为cm和atm;ϕυ为气体的吸收线型函数;αυ为待测气体对特定波数(υ)激光的吸收率。

利用传统直接吸收方法反演气体浓度时,首先根据获得的直接吸收光谱信号计算气体在波数范围内的积分吸光度(A):

         A=-αυLdυ=-STCPLϕυdυ=          STCPL

S(T)与HITRAN数据库29中谱线强度(S0)之间的转换关系为

ST=S0×N0

式中:S0为HITRAN数据库中的气体吸收线强,单位为cm-1/(molecule·cm-2)N0为特定温度下一个大气压单位体积内的分子数,单位为molecule·cm-3·atm-1

式(2)进行改写后,气体体积分数C可以表示为所有已知量的数学运算:

C=ASTPL=AS0N0PL

式(4)可知,传统直接吸收光谱进行气体浓度反演时要获得准确的参数信息,其中包括光程长度L、气体压强P、谱线强度S0、积分吸光度A。在以上所列出的参数中,光程长度和气体压强很容易获取。而积分吸光度则要分情况讨论:对于单谱线吸收气体,可以通过拟合非吸收区获得基线,进而得到气体的完整吸收谱;对于谱带吸收气体,由于不存在非吸收区,所以要采用实时背景采集获得基线信息,进而得到完整吸收光谱。但是C2H4气体检测的关键问题在于,HITRAN数据库只包含了中红外波段的谱线强度信息,缺少近红外波段谱线强度参数,所以利用传统免标定直接吸收光谱方法无法计算C2H4浓度。考虑到波长调制光谱不关注具体的谱线强度信息,而是采用标定的方式,计算采集到的实时光谱与标定光谱的最小二乘拟合系数,进而计算气体浓度。但是C2H4在近红外波段具有谱带吸收特征,利用波长调制光谱进行浓度计算将会出现非线性效应。因此本文将波长调制光谱中的标定方法应用于直接吸收光谱,结合两者的优势来完成谱带吸收气体的浓度测量。该方法一方面不关心具体的参数信息,另外一方面也避免了波长调制光谱的非线性以及复杂硬件和计算。

3 实验设计

3.1 吸收谱线仿真及实验装置

图1所示,在光程为20 m、温度为298 K的条件下,基于HITRAN数据库仿真分别获得了1013 mbar压强下体积分数为100×10-6的CH4的直接吸收光谱和100 mbar压强下体积分数为500×10-6的CH4直接吸收光谱,分别如图1中的虚线和点线所示。另外,基于PNNL数据库仿真获得了1013 mbar压强下体积分数为10×10-6的C2H4的直接吸收光谱,如图1中的实线所示,其具有明显的折线特征,这主要是因为PNNL数据库中的光谱分辨率较低。从实线和虚线两组模拟吸收谱线可以看出,在1013 mbar压强下,C2H4与CH4在1626 nm附近均具有谱带吸收特征,且它们之间存在严重的混叠干扰,这将导致在混合气体中无法获取精确的C2H4光谱,也就无法计算其浓度。所以本文利用压强控制系统对严重混叠的CH4和C2H4直接吸收光谱在100 mbar低压条件下进行分离,解决两者相互干扰的问题,进而结合后续处理流程实现C2H4气体浓度的精确测量。而由图1中的点线也可以看出,1626.2 nm附近(方框区域)虽然包含了4个较强的CH4吸收峰,但仍然存在较宽的弱吸收部分,并且在该波长范围内,C2H4也具有较强的吸收峰。

图 1. CH4和C2H4的吸收光谱图

Fig. 1. Absorption spectra of CH4 and C2H4

下载图片 查看所有图片

实验系统原理图如图2所示,中心波长为1625 nm的分布反馈式(DFB)激光器利用锯齿波信号驱动电路以扫描特定的波长范围,并且在实验过程中可以通过调节电路系统的温度系数和电流系数控制出射激光的扫描波长范围。除了驱动激光器外,电路系统还能够实现信号采集、信号滤波等功能。实验系统使用了自制封装有准直光纤和光电探测器的集成气体吸收池,光程长度可以根据测量需求扩展为3~40 m,实验中其有效光程为18.5 m。基于以上CH4和C2H4谱线的分析可知,必须采用压强控制系统使吸收池内达到低压条件以避免CH4的干扰。因此在吸收池前端接入带有压力传感器和质量流量计的压强控制器,在吸收池后端接入球阀,并在后端接真空泵,组成的压强控制系统可以在30~150 mbar压强范围内实现精度为0.01 mbar的压强稳定控制。

图 2. 实验系统原理图

Fig. 2. Schematic of experimental system

下载图片 查看所有图片

3.2 吸收光谱测量及标定范围选择

虽然通过仿真模拟获得了图1所示的C2H4吸收谱线,但不管是在HITRAN还是在PNNL数据库中都不存在低压下C2H4的吸收谱线数据。因此为了确定标定范围,本文基于图2所示的实验系统,在100 mbar稳定压强条件下,分别对体积分数为100×10-6的C2H4气体和体积分数为3000×10-6的CH4气体进行了测量,得到两者的实测光谱,如图3(a)所示。可以看出,该扫描范围包含了4条完整的CH4强吸收谱线,与图1中1626.2 nm附近方框内的点线波形一致,所以可以判断此时激光器扫描波长覆盖范围即为方框所包含的波长范围。另外,图3(a)还包含了4条C2H4强吸收谱线,且第二条C2H4吸收光谱受到CH4光谱的影响最小。在图3(a)中,即使CH4体积分数为C2H4体积分数的30倍,C2H4的直接吸收信号强度依然远远大于CH4在该波段的干扰信号强度。所以在实验中选择图3(a)中虚线框标注的直接吸收光谱进行浓度反演。

图 3. 100 mbar压强下CH4和C2H4的吸收光谱图。(a)宽扫描范围下CH4和C2H4的吸收光谱;(b)缩小波长扫描范围后C2H4的吸收光谱

Fig. 3. Absorption spectra of CH4 and C2H4 at 100 mbar. (a) Absorption spectra of CH4 and C2H4 in wide scanning range; (b) absorption spectrum of C2H4 after reducing wavelength scanning range

下载图片 查看所有图片

但值得注意的是,此时为了测量较宽波长范围内的CH4和C2H4的吸收谱线,激光器的扫描电流范围过大,而实验系统所采用的电路系统采样率是固定的,扫描范围过大会导致信号欠采样,也就会造成直接吸收光谱峰值降低。调节电路系统中驱动激光器的温度系数和电流系数以缩小激光器的扫描范围,使得激光器出射波长能够覆盖图3(b)中4条C2H4吸收光谱,标定范围是图3(b)中虚线框所示的范围。此时,将图3(b)选中的直接吸收光谱范围扩宽至250个采样点,并且可以观察到,体积分数同样为100×10-6的C2H4气体在图3(b)中的第二个吸收峰处的峰值明显大于0.005,而在图3(a)中则小于0.005,这正是扫描范围过大导致的欠采样现象。并且在实验中也验证了继续调整电流扫描范围,直接吸收光谱信号峰值没有明显变化,所以后续所有计算都将基于图3(b)中虚线框标定范围内的直接吸收光谱进行。

4 结果分析与讨论

基于图2中的压强控制系统,在压强稳定到100 mbar后,采集1 h的压强实验数据,结果如图4(a)所示,并对所得压强数据进行分布统计和高斯拟合,结果如图4(b)所示,可得其半峰全宽(FWHM)为0.008 mbar,证明了该实验系统在压强控制方面的稳定性,其能够为后续实验提供可靠保障。

图 4. 压强数据及频率分布直方图和高斯拟合结果。(a)压强数据;(b)频率分布直方图和高斯拟合结果

Fig. 4. Pressure data, frequency distribution histogram, and Gaussian fitting result. (a) Pressure data; (b) frequency distribution histogram and Gaussian fitting result

下载图片 查看所有图片

在100 mbar压强条件下,采集5组不同体积分数的C2H4的直接吸收光谱信号,其在图3(b)标定范围内的直接吸收光谱如图5(a)所示。在C2H4体积分数从10×10-6增大到90×10-6的过程中,直接吸收光谱峰值也随之增加。采用体积分数为100×10-6的C2H4的直接吸收光谱作为标定光谱,计算以上5组C2H4气体的体积分数,其结果如图5(b)所示,并对计算体积分数结果与标准体积分数进行了线性拟合,两者的线性拟合优度(R2)达到了0.999。同时,也计算得到了以上5组反演体积分数的绝对误差,如图5(c)所示,对于体积分数为50×10-6的C2H4,最大误差为-1.47×10-6。基于得到的体积分数结果和误差结果进行分析,利用标定直接吸收光谱方法测量C2H4体积分数,不仅能够得到标准体积分数与反演体积分数之间的良好线性关系,并且保证了测量结果的准确性和可靠性。

图 5. 不同体积分数的C2H4的吸收光谱、测量线性度及误差。(a)不同体积分数的C2H4的吸收光谱;(b)测量结果及线性拟合结果;(c)绝对误差

Fig. 5. Absorption spectra, measurement linearity values and errors of C2H4 with different volume fractions. (a) Absorption spectra of C2H4 with different volume fractions; (b) measurement and linear fitting results; (c) absolute error

下载图片 查看所有图片

为了获得该系统对C2H4的检测下限,选择体积分数为10×10-6的C2H4气体的直接吸收原始信号进行分析,结果如图6所示。采用的分析方法与二次谐波检测下限分析方法一致,首先获取特定浓度下的信噪比,进而计算检测下限。根据图6中标注可知,体积分数为10×10-6的C2H4气体对应的直接吸收光谱峰值为5.80×10-4,而噪声峰值为0.80×10-4,可以计算得到当前信噪比(SNR)为7.25。按照检测下限对应一倍信噪比进行计算,可以得到该实验系统对C2H4的检测下限为1.38×10-6

图 6. 体积分数为10×10-6的C2H4的吸收光谱

Fig. 6. Absorption spectrum of C2H4 with volume fraction of 10×10-6

下载图片 查看所有图片

不同于波长调制光谱,直接吸收光谱进行浓度测量时没有吸光度小于0.05的限制,因此该方法也同样能够实现高体积分数C2H4气体的测量,这再次体现了标定直接吸收光谱方法的优势。采用3组高体积分数C2H4气体进行了系统响应时间的分析,实验过程中的气体体积分数变化如图7所示。首先在气体吸收池中通入体积分数为300×10-6的C2H4气体,稳定一段时间后,通入体积分数为500×10-6的C2H4气体,可以发现其上升响应时间(t10%90%)为62 s;再稳定一段时间后,通入体积分数为200×10-6的C2H4气体,测得其下降响应时间(t90%10%)为66 s。此实验对系统响应时间和高体积分数C2H4气体检测进行了双重验证。对系统响应时间过长的原因也进行了分析,当采用压强控制系统时,气泵的抽力和球阀的开度决定了流量的大小,因此可以通过对两者的调节,增大进气流量,进而缩短系统的响应时间。

图 7. 响应时间的测试结果

Fig. 7. Test results of response time

下载图片 查看所有图片

对体积分数为20×10-6的C2H4气体进行了40 min的连续测量,测量结果如图8(a)所示。对以上数据的Allan方差进行分析,结果如图8(b)所示。当积分时间为1 s时,系统对C2H4气体的测量精度[σ(1 s)]为0.61×10-6;随着积分时间的增加,在第77 s时系统的检测精度[σ(77 s)]可以达到0.04×10-6。并且在0~77 s阶段,计算得到的Allan方差呈线性下降趋势,说明高斯白噪声起主导作用。因此可以判断系统的最佳积分时间为77 s。

图 8. Allan方差分析结果。(a) C2H4体积分数;(b) Allan方差

Fig. 8. Allan variance analysis results. (a) Volume fraction of C2H4; (b) Allan variance

下载图片 查看所有图片

5 结论

针对C2H4气体近红外波段谱线强度不明确和谱带吸收的特点,将波长调制光谱中的标定计算方法应用于直接吸收光谱,得到了一种标定直接吸收光谱方法。搭建了带有高精度压强控制系统的C2H4气体激光吸收光谱检测系统,并获得了C2H4气体在1626 nm附近的直接吸收光谱,对其与CH4气体的模拟和实测吸收光谱进行对比,确定了标定光谱的范围并进行了一系列实验。经过实验验证,该方法在体积分数小于100×10-6的范围内对C2H4气体检测的线性拟合优度为0.999,最低检测限能够达到1.38×10-6。通过Allan方差分析可知,该系统对C2H4的检测精度在1 s时为0.61×10-6,在77 s时能够达到0.04×10-6。除此之外,在系统动态响应实验中,对高浓度C2H4气体的浓度变化进行了实时检测,对系统响应时间以及高浓度C2H4测量进行了同时验证。基于以上分析,标定直接吸收光谱方法能够实现C2H4气体的实时在线监测,突破了传统直接吸收光谱需要精确谱线强度信息的限制,也有希望解决其他类似气体的实时检测问题,可以在很大程度上拓展直接吸收光谱的应用范围。

参考文献

[1] Chen K, Zhang B, Guo M, et al. Photoacoustic trace gas detection of ethylene in high-concentration methane background based on dual light sources and fiber-optic microphone[J]. Sensors and Actuators B: Chemical, 2020, 310: 127825.

[2] Xie J, Xue S, Cheng W M, et al. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system[J]. International Journal of Coal Geology, 2011, 85(1): 123-127.

[3] Deng J, Xiao Y, Li Q W, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 2015, 157: 261-269.

[4] 陈颖, 高光珍, 蔡廷栋. 基于光声光谱的乙烯探测技术[J]. 中国激光, 2017, 44(5): 0511001.

    Chen Y, Gao G Z, Cai T D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(5): 0511001.

[5] Tanaka K, Akishima K, Sekita M, et al. Measurement of ethylene in combustion exhaust using a 3.3-μm distributed feedback interband cascade laser with wavelength modulation spectroscopy[J]. Applied Physics B, 2017, 123(8): 219.

[6] Teodoro C G, Schramm D U, Sthel M S, et al. CO2 laser photoacoustic detection of ethylene emitted by diesel engines used in urban public transports[J]. Infrared Physics & Technology, 2010, 53(2): 151-155.

[7] Zhang L W, Zhang Z R, Wang Q J, et al. A sensitive carbon monoxide sensor for industrial process control based on laser absorption spectroscopy with a 2.3 μm distributed feedback laser[J]. Optics and Lasers in Engineering, 2022, 152: 106950.

[8] 孙利群, 邹明丽, 王旋. 可调谐半导体激光吸收光谱法在呼吸诊断中的应用[J]. 中国激光, 2021, 48(15): 1511001.

    Sun L Q, Zou M L, Wang X. Application of tunable diode laser absorption spectroscopy in breath diagnosis[J]. Chinese Journal of Lasers, 2021, 48(15): 1511001.

[9] 庞涛, 孙鹏帅, 张志荣, 等. 宽温紧凑型全量程激光甲烷传感探头设计[J]. 光子学报, 2020, 49(10): 1012002.

    Pang T, Sun P S, Zhang Z R, et al. Design of compact full-range laser methane sensor with wide temperature range[J]. Acta Photonica Sinica, 2020, 49(10): 1012002.

[10] Liu N W, Xu L G, Zhou S, et al. Simultaneous detection of multiple atmospheric components using an NIR and MIR laser hybrid gas sensing system[J]. ACS Sensors, 2020, 5(11): 3607-3616.

[11] Gu M S, Chen J J, Zhang Y P, et al. Portable TDLAS sensor for online monitoring of CO2 and H2O using a miniaturized multi-pass cell[J]. Sensors, 2023, 23(4): 2072.

[12] Zhang J, Du J Y, Jiang C, et al. Measurement of δ18O in water vapor using a tunable diode laser-based spectrometer[J]. Applied Physics B, 2023, 129(5): 80.

[13] 李金义, 杨雪, 张宸阁, 等. 参数优化的 Kalman 滤波用于激光吸收光谱气体测量[J]. 光学学报, 2022, 42(18): 1830001.

    Li J Y, Yang X, Zhang C G, et al. Kalman filtering with optimized parameters for gas measurement using laser absorption spectroscopy[J]. Acta Optica Sinica, 2022, 42(18): 1830001.

[14] 孙亚丽, 朱昕玥, 吴达坤, 等. 基于反谐振空芯光纤的中红外TDLAS系统设计及应用实验研究[J]. 光学学报, 2023, 43(13): 1306005.

    Sun Y L, Zhu X Y, Wu D K, et al. Design and experimental study of mid-infrared TDLAS system based on anti-resonant hollow core fiber[J]. Acta Optica Sinica, 2023, 43(13): 1306005.

[15] 张志荣, 孙鹏帅, 庞涛, 等. 激光吸收光谱技术在工业生产过程及安全预警标识性气体监测中的应用[J]. 光学 精密工程, 2018, 26(8): 1925-1937.

    Zhang Z R, Sun P S, Pang T, et al. Application of laser absorption spectroscopy for identification gases in industrial production processes and early safety warning[J]. Optics and Precision Engineering, 2018, 26(8): 1925-1937.

[16] Raza M, Xu K, Lu Z M, et al. Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption spectroscopy[J]. Optics & Laser Technology, 2022, 154: 108285.

[17] Shao L G, Chen J J, Wang K Y, et al. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation[J]. Sensors and Actuators B: Chemical, 2022, 352: 130995.

[18] Yi Y, Kun D, Li R, et al. Accurate temperature prediction with small absorption spectral data enabled by transfer machine learning[J]. Optics Express, 2021, 29(25): 40699-40709.

[19] 曹章, 高欣, 陆方皞, 等. 激光吸收光谱层析成像及复杂燃烧场动态监测[J]. 中国激光, 2022, 49(19): 1904002.

    Cao Z, Gao X, Lu F H, et al. Laser absorption spectral tomography for dynamical combustion monitoring[J]. Chinese Journal of Lasers, 2022, 49(19): 1904002.

[20] Liu Y H, Ma Y F. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology[J]. Chinese Optics Letters, 2023, 21(3): 033001.

[21] Zhang G, Gao G Z, Zhang T, et al. Absorption spectroscopy of ethylene near 1.62 µm at high temperatures[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241: 106748.

[22] Zhang T, Zhang G, Liu X, et al. A TDLAS sensor for simultaneous measurement of temperature and C2H4 concentration using differential absorption scheme at high temperature[J]. Frontiers in Physics, 2020, 8: 44.

[23] Li J Y, Du Z H, Zhang Z Y, et al. Hollow waveguide-enhanced mid-infrared sensor for fast and sensitive ethylene detection[J]. Sensor Review, 2017, 37(1): 82-87.

[24] Wang W F, Yang B, Liu H F, et al. A multiline fitting method for measuring ethylene concentration based on WMS-2f/1f[J]. Scientific Reports, 2023, 13(1): 15302.

[25] Gao G Z, Zhang T, Zhang G, et al. Simultaneous and interference-free measurements of temperature and C2H4 concentration using a single tunable diode laser at 1.62 µm[J]. Optics Express, 2019, 27(13): 17887-17904.

[26] Zou M L, Sun L Q, Wang X. Multigas sensing based on wavelength modulation spectroscopy using frequency division multiplexing combined with time division multiplexing[J]. IEEE Sensors Journal, 2022, 22(13): 12930-12938.

[27] 王振, 杜艳君, 丁艳军, 等. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度[J]. 物理学报, 2020, 69(6): 064205.

    Wang Z, Du Y J, Ding Y J, et al. Monitoring of ambient methane and carbon dioxide concentrations based on wavelength modulationdirect absorption spectroscopy[J]. Acta Physica Sinica, 2020, 69(6): 064205.

[28] Li S M, Sun L Q. Natural logarithm wavelength modulation spectroscopy: a linear method for any large absorbance[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 254: 119601.

[29] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

王前进, 孙鹏帅, 张志荣, 蔡永军, 黄文彪, 庞涛, 夏滑, 吴边. 基于标定直接吸收光谱方法的近红外乙烯检测[J]. 中国激光, 2024, 51(8): 0811004. Qianjin Wang, Pengshuai Sun, Zhirong Zhang, Yongjun Cai, Wenbiao Huang, Tao Pang, Hua Xia, Bian Wu. Near-infrared C2H4 Detection Based on Calibrated Direct Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2024, 51(8): 0811004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!