人工晶体学报, 2023, 52 (2): 354, 网络出版: 2023-03-18  

微米及纳米WC-Co基BDD污水处理电极的制备研究

Preparation of Micro- and Nano-WC-Co/BDD Electrodes for Wastewater Treatment
作者单位
1 无锡职业技术学院机械技术学院,无锡 214122
2 上海海洋大学工程学院,上海 201306
3 张家港市微纳新材料科技有限公司,苏州 215699
摘要
硼掺杂金刚石(BDD)是高级氧化法污水处理领域的一种电极材料,其衬底材料的选择是电极涂层制备的核心问题之一,良好的衬底材料可提高膜基结合力,从而延长电极的使用寿命。本文提出以热膨胀系数较小的WC-Co为衬底,采用热丝化学气相沉积(HFCVD)法制备微米、纳米两种表面形貌的BDD电极,并利用场发射扫描电子显微镜(FE-SEM)、拉曼光谱、X射线光电子能谱(XPS)、循环伏安法对两种电极的物理性能、表面状态及电化学性能进行表征,研究结果表明:在沉积速率方面,微米薄膜是纳米薄膜的1.5倍,但纳米薄膜具有更小的残余应力,仅为-0.6 GPa;两种电极在0.5 mol/L的H2SO4溶液中均展现较宽的电化学窗口(约为3.7~3.9 V)和极小的背景电流,在K3[Fe(CN)6]氧化还原系统中表现出良好的准可逆特性,这些特性均与常规Si、Nb、Ti基BDD电极相似。在此基础上,本文对两种电极开展了苯酚模拟废水处理和加速寿命试验(ALT),结果显示:相同参数下,纳米电极在ALT中使用寿命约为423 h,明显优于微米电极的310 h;在苯酚氧化实验中,两种电极对苯酚均展现了较好的矿化效果,化学需氧量(COD)处理的电流效率为88%~94%,与标准BDD电极相接近。因此,WC-Co或可作为BDD污水处理电极的良好衬底材料。
Abstract
Boron-doped diamond (BDD) is an electrode material applied in advanced oxidation technology for wastewater treatment, the choice of its substrate material is one of the key considerations for making electrode coating. The appropriate substrate material enhances the adhesion of the film to the substrate and then lengthens the service life of the electrode. In this work, cemented carbide (WC-Co) which has a low coefficient of thermal expansion is employed as the substrate, and microcrystalline and nanocrystalline BDD films are prepared by hot filament chemical vapor deposition (HFCVD). The two types of WC-Co/BDD electrodes were investigated by field emission scanning electron microscopy (FE-SEM), micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetric. During the fixed deposition time, the growth rate of microcrystalline films is 1.5 times that of nanocrystalline films, and the residual stress of microcrystalline films (1.7 GPa) is greater than that of nanocrystalline films (-0.6 GPa). The two varieties of WC-Co/BDD electrodes exhibit a wide potential window greater than 3.7 V and featureless background current in 0.5 mol/L H2SO4 solution; they have a quasi-reversible behavior in the K3[Fe(CN)6] redox system, which are similar to conventional Si, Nb, Ti based BDD electrodes. Subsequently, the electrodes were characterized by replicated experiments for oxidating phenol and an accelerated life test (ALT). The results show that the lifetime of the nano-electrode (about 423 h) is clearly superior to that of the micro-electrode (about 310 h) when identical conditions are used in the ALT. In the phenol oxidation experiments, both electrodes show a good mineralization impact on phenol; the current efficiency of the micro-electrode and nano-electrode are 88%~94%, which is close to standard BDD electrode. As a result, WC-Co might be an appropriate substrate for the BDD electrodes in wastewater treatment applications.
参考文献

[1] 全学军, 徐云兰, 程治良. 难降解废水高级氧化技术[M]. 北京: 化学工业出版社, 2019.

[2] ALFARO M A Q, FERRO S, MARTNEZ-HUITLE C A, et al. Boron doped diamond electrode for the wastewater treatment[J]. Journal of the Brazilian Chemical Society, 2006, 17(2): 227-236.

[3] MARTNEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes[J]. Chemical Society Reviews, 2006, 35(12): 1324-1340.

[4] 刘丽丽, 温 青, 矫彩山, 等. 电催化氧化处理难降解有机废水的研究进展[J]. 化学工程师, 2005, 19(9): 33-34.

[5] ZANIN H, TEFILO R F, PETERLEVITZ A C, et al. Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution[J]. Journal of Applied Electrochemistry, 2013, 43(3): 323-330.

[6] 李学敏. 金刚石薄膜电极的电化学特性及其在污水处理中的应用研究[D]. 北京: 清华大学, 2004.

[7] CHEN X M, CHEN G H, GAO F R, et al. High-performance Ti/BDD electrodes for pollutant oxidation[J]. Environmental Science & Technology, 2003, 37(21): 5021-5026.

[8] BALUCHOV S, DANˇHEL A, DEJMKOV H, et al. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules-A review[J]. Analytica Chimica Acta, 2019, 1077: 30-66.

[9] HAENNI W, RYCHEN P, FRYDA M, et al. Chapter 5 Industrial applications of diamond electrodes[M]//Thin-Film Diamond Ⅱ. Amsterdam: Elsevier, 2004: 149-196.

[10] WANG H T, WEBB T, BITLER J W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite[J]. International Journal of Refractory Metals and Hard Materials, 2015, 49: 170-177.

[11] PELSKOV Y V, SAKHAROVA A Y, KROTOVA M D, et al. Photoelectrochemical properties of semiconductor diamond[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 228(1/2): 19-27.

[12] ZHANG T, QIAN Y Z, WANG S, et al. Influence of the heat dissipation mode of long-flute cutting tools on temperature distribution during HFCVD diamond films[J]. Crystals, 2019, 9(8): 394.

[13] ZHANG T, FENG Q, YU Z Y, et al. Effect of mechanical pretreatment on nucleation and growth of HFCVD diamond films on cemented carbide tools with a complex shape[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105016.

[14] WANG X C, ZHANG J G, SHEN B, et al. Fracture and solid particle erosion of micro-crystalline, nano-crystalline and boron-doped diamond films[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45: 31-40.

[15] WANG L, LEI X L, SHEN B, et al. Cutting performances of boron doped diamond-coated milling tools in machining graphite[J]. Materials Science Forum, 2011, 697/698: 458-461.

[16] WANG L, LEI X L, SHEN B, et al. Tribological properties and cutting performance of boron and silicon doped diamond films on Co-cemented tungsten carbide inserts[J]. Diamond and Related Materials, 2013, 33: 54-62.

[17] SAITO K, SUZUKI A, KAWANA A, et al. Preparation of boron-doped diamond films on cemented tungsten carbide[J]. Journal of the Surface Finishing Society of Japan, 2017, 68(12): 727-732.

[18] 张 韬. 化学气相法合成高品级金刚石单晶微粉的基础研究[D]. 上海: 上海交通大学, 2014.

[19] FISHER V, GANDINI D, LAUFER S, et al. Preparation and characterization of Ti/diamond electrodes[J]. Electrochimica Acta, 1998, 44(2/3): 521-524.

[20] MICHLER J, VON KAENEL Y, STIEGLER J, et al. Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films[J]. Journal of Applied Physics, 1998, 83(1): 187-197.

[21] PRADHAN D, LEE Y C, PAO C W, et al. Low temperature growth of ultrananocrystalline diamond film and its field emission properties[J]. Diamond and Related Materials, 2006, 15(11/12): 2001-2005.

[22] RAMAMURTI R, BECKER M, SCHUELKE T, et al. Synthesis of boron-doped homoepitaxial single crystal diamond by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1320-1323.

[23] GHEERAERT E, GONON P, DENEUVILLE A, et al. Effect of boron incorporation on the “quality” of MPCVD diamond films[J]. Diamond and Related Materials, 1993, 2(5/6/7): 742-745.

[24] SILVA F, GICQUEL A, TARDIEU A, et al. Control of an MPACVD reactor for polycrystalline textured diamond films synthesis: role of microwave power density[J]. Diamond and Related Materials, 1996, 5(3/4/5): 338-344.

[25] SWAIN G M. The susceptibility to surface corrosion in acidic fluoride media: a comparison of diamond, HOPG, and glassy carbon electrodes[J]. Journal of the Electrochemical Society, 1994, 141(12): 3382-3393.

[26] TIAN Y, CHEN X M, SHANG C, et al. Active and stable TiSiBDD anodes for electro-oxidation[J]. Journal of the Electrochemical Society, 2006, 153(7): J80.

[27] NIDHEESH P V, DIVYAPRIYA G, OTURAN N, et al. Environmental applications of boron-doped diamond electrodes: 1. applications in water and wastewater treatment[J]. ChemElectroChem, 2019, 6(8): 2124-2142.

[28] WEI J J, LI C M, GAO X H, et al. The influence of boron doping level on quality and stability of diamond film on Ti substrate[J]. Applied Surface Science, 2012, 258(18): 6909-6913.

[29] CHEN X M, GAO F R, CHEN G H. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation[J]. Journal of Applied Electrochemistry, 2005, 35(2): 185-191.

[30] YANG W L, TAN J L, CHEN Y H, et al. Relationship between substrate type and BDD electrode structure, performance and antibiotic tetracycline mineralization[J]. Journal of Alloys and Compounds, 2022, 890: 161760.

[31] KARIM A V, NIDHEESH P V, OTURAN M A. Boron-doped diamond electrodes for the mineralization of organic pollutants in the real wastewater[J]. Current Opinion in Electrochemistry, 2021, 30: 100855.

张韬, 薛喆, 万方, 张天颖, 彭广盼, 黄国栋. 微米及纳米WC-Co基BDD污水处理电极的制备研究[J]. 人工晶体学报, 2023, 52(2): 354. ZHANG Tao, XUE Zhe, WAN Fang, ZHANG Tianying, PENG Guangpan, HUANG Guodong. Preparation of Micro- and Nano-WC-Co/BDD Electrodes for Wastewater Treatment[J]. Journal of Synthetic Crystals, 2023, 52(2): 354.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!