半导体光电, 2023, 44 (4): 519, 网络出版: 2023-11-26  

基于BAS-BP-Bagging模型的光纤陀螺温度补偿

The Temperature Compensation Method of Fiber Optic Gyroscope Based on BAS-BP-Bagging Neural Network
作者单位
1 北京信息科技大学 高动态导航技术北京市重点实验室,北京 100101
2 北京航天时代光电科技有限公司,北京 100094
摘要
为提高光纤陀螺的输出精度,以天牛须搜索算法(BAS)优化后的BP神经网络模型为基学习器,采用Bagging并行集成学习算法建立了BAS-BP-Bagging温度补偿模型,并对某型号光纤陀螺进行了温度补偿实验。实验结果表明,在-40~+60 ℃温度变化环境下,该方法补偿后的光纤陀螺温度漂移相较于补偿前减小了近80%,相较于多项式补偿算法减小了55%,相较于BP神经网络补偿算法减小了30%左右。同时该模型在对新鲜样本的补偿过程中表现出了较为优越的泛化性能。
Abstract
In order to improve the output accuracy of fiber optic gyroscope, the BP neural network model optimized by the beetle antennae search algorithm (BAS) was used as the base learner, and the Bagging parallel integrated learning algorithm was used to establish a BAS-BP-Bagging temperature compensation model, and a temperature compensation experiment was conducted for a certain model of fiber optic gyroscope. The experimental results show that under the temperature change environment from -40 ℃ to +60 ℃, the temperature drift of the fiber optic gyroscope after compensation is reduced by nearly 80% compared with that before compensation, 55% compared with the polynomial compensation algorithm, and about 30% compared with the BP neural network compensation algorithm. And the model shows superior generalization performance in the compensation of fresh samples.
参考文献

[1] 王 巍, 于海成, 冯文帅, 等. 高精度光纤陀螺仪技术[M]. 北京: 国防工业出版社, 2021: 13.

[2] 罗 全, 秦琳琳, 周 全, 等. 闭环光纤陀螺温度误差分段补偿方法实现[J]. 电光与控制, 2018, 25(12): 73-76.

[3] Jin J, Wang Z, Zhang Z G, et al. Temperature errors modeling for fiber optic gyroscope using multiple linear regression models[J]. J. of Astronautics, 2008, 29(6): 1912-1916.

[4] Meng X J, Meng X L. Nonlinear system simulation based on the BP neural network[C]// 2010 Third Inter. Conf. on Intelligent Networks and Intelligent Systems, 2010: 334-337.

[5] 罗 超, 孙 枫, 刘广哲. 基于BP神经网络的光纤陀螺零偏温度补偿[J]. 弹箭与制导学报, 2005(2): 104-106, 109.

[6] 刘元元, 杨功流, 李思宜. BP-Bagging模型在光纤陀螺温度补偿中的应用[J]. 中国惯性技术学报, 2014, 22(2): 254-259.

[7] Jiang X Y, Li S. BAS: beetle antennae search algorithm for optimization problems[J]. Inter. J. of Robotics and Control, 2017, 1(1).

[8] 胡琼丹, 胡宗福. 基于最优子集回归的光纤陀螺变温零偏补偿[J]. 半导体光电, 2019, 40(6): 762-765, 770.

[9] Jadav K, Panchal M. Optimizing weights of artificial neural networks using genetic algorithms[J]. Inter. J. of Advanced Research in Computer Science and Electronics Engineering, 2012, 1(10): 47-51.

[10] 仇海涛, 徐梦桐, 刘 伟, 等. 基于ACO-BP神经网络的光纤陀螺温度补偿方法研究[J]. 电光与控制, 2023, 30(7): 78-81, 118.

[11] Liu J G, Chen X Y. Temperature drift compensation of a FOG based on an HKSVM optimized by an improved hybrid BAS-GSA algorithm[J]. Appl. Opt., 2021, 60: 10539-10547.

[12] 杨洪涛, 马 群, 张梦遥, 等. 基于BAS-BP模型的在机测量系统误差白化建模[J]. 组合机床与自动化加工技术, 2022, 5: 163-167.

王开, 仇海涛, 石海洋. 基于BAS-BP-Bagging模型的光纤陀螺温度补偿[J]. 半导体光电, 2023, 44(4): 519. WANG Kai, QIU Haitao, SHI Haiyang. The Temperature Compensation Method of Fiber Optic Gyroscope Based on BAS-BP-Bagging Neural Network[J]. Semiconductor Optoelectronics, 2023, 44(4): 519.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!