中国激光, 2022, 49 (24): 2407104, 网络出版: 2022-11-09  

基于多光子聚合微笼阵列的单细胞捕获方法 下载: 693次封面文章

Single Cell Capture Method Based on Multiphoton Polymerization Microcage Arrays
杨婷 1,2,3孙丽娜 1,*代国朋 1,2,3吕孝峰 1,2,3王晓朵 2,3,**
作者单位
1 东北大学机械工程与自动化学院,辽宁 沈阳 110819
2 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016
3 中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016
引用该论文

杨婷, 孙丽娜, 代国朋, 吕孝峰, 王晓朵. 基于多光子聚合微笼阵列的单细胞捕获方法[J]. 中国激光, 2022, 49(24): 2407104.

Ting Yang, Lina Sun, Guopeng Dai, Xiaofeng Lü, Xiaoduo Wang. Single Cell Capture Method Based on Multiphoton Polymerization Microcage Arrays[J]. Chinese Journal of Lasers, 2022, 49(24): 2407104.

参考文献

[1] He D X, Mao A Q, Zheng C B, et al. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single cell level[J]. National Science Review, 2020, 7(5): 881-896.

[2] Galler K, Bräutigam K, Große C, et al. Making a big thing of a small cell: recent advances in single cell analysis[J]. The Analyst, 2014, 139(6): 1237-1273.

[3] Schubert C. Single cell analysis: the deepest differences[J]. Nature, 2011, 480(7375): 133-137.

[4] Weaver W M, Tseng P, Kunze A, et al. Advances in high-throughput single cell microtechnologies[J]. Current Opinion in Biotechnology, 2014, 25: 114-123.

[5] Wang X L, Gou X, Chen S X, et al. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition[J]. Journal of Micromechanics and Microengineering, 2013, 23(7): 075006.

[6] Ozasa K, Won J, Song S, et al. Autonomous oscillation/separation of cell density artificially induced by optical interlink feedback as designed interaction between two isolated microalgae chips[J]. Scientific Reports, 2016, 6: 24602.

[7] Hunt T P, Westervelt R M. Dielectrophoresis tweezers for single cell manipulation[J]. Biomedical Microdevices, 2006, 8(3): 227-230.

[8] Voldman J, Gray M L, Toner M, et al. A microfabrication-based dynamic array cytometer[J]. Analytical Chemistry, 2002, 74(16): 3984-3990.

[9] Wu C H, Chen R F, Liu Y, et al. A planar dielectrophoresis-based chip for high-throughput cell pairing[J]. Lab on a Chip, 2017, 17(23): 4008-4014.

[10] Petersson F, Nilsson A, Holm C, et al. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels[J]. The Analyst, 2004, 129(10): 938-943.

[11] Guo F, Mao Z M, Chen Y C, et al. Three-dimensional manipulation of single cells using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6): 1522-1527.

[12] Zhao L B, Pan L, Zhang K, et al. Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation[J]. Lab on a Chip, 2009, 9(20): 2981-2986.

[13] Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system[J]. Advanced Materials, 2006, 18(9): 1152-1156.

[14] Kang J H, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells[J]. Lab on a Chip, 2012, 12(12): 2175-2181.

[15] Begantsova Y E, Zvagelsky R, Baranov E V, et al. Imidazole-containing photoinitiators for fabrication of sub-micron structures by 3D two-photon polymerization[J]. European Polymer Journal, 2021, 145: 110209.

[16] Yang D, Liu L P, Gong Q H, et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering[J]. Macromolecular Rapid Communications, 2019, 40(8): e1900041.

[17] Zheng Y C, Zhao Y Y, Zheng M L, et al. Cucurbit[7]uril-carbazole two-photon photoinitiators for the fabrication of biocompatible three-dimensional hydrogel scaffolds by laser direct writing in aqueous solutions[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 1782-1789.

[18] 白雪, 陈烽. 飞秒激光制备超疏水表面的研究进展[J]. 光学学报, 2021, 41(1): 0114003.

    Bai X, Chen F. Recent advances in femtosecond laser-induced superhydrophobic surfaces[J]. Acta Optica Sinica, 2021, 41(1): 0114003.

[19] 吴志鹏, 银恺, 吴俊瑞, 等. 飞秒激光微纳制造水下气体浸润性表面[J]. 激光与光电子学进展, 2020, 57(11): 111418.

    Wu Z P, Yin K, Wu J R, et al. Femtosecond laser micro-nano fabrication of underwater gas wettable surface[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111418.

[20] 张明池, 刘子源, 潘宁, 等. 飞秒激光制备不锈钢微纳结构表面的润湿机制研究[J]. 中国激光, 2021, 48(18): 1802001.

    Zhang M C, Liu Z Y, Pan N, et al. Wetting mechanism of stainless steel micro-nano structure surface prepared by femtosecond laser[J]. Chinese Journal of Lasers, 2021, 48(18): 1802001.

[21] 郭敏超, 王明娣, 张胜江, 等. FR-4覆铜板飞秒激光微孔加工工艺研究[J]. 中国激光, 2020, 47(12): 1202008.

    Guo M C, Wang M D, Zhang S J, et al. Techniques for femtosecond laser processing of micro-holes in FR-4 copper clad laminate[J]. Chinese Journal of Lasers, 2020, 47(12): 1202008.

[22] 王解, 赵宗晨, 江超, 等. 飞秒激光在单模光纤中精密加工微孔及其传感应用[J]. 激光与光电子学进展, 2020, 57(11): 111425.

    Wang J, Zhao Z C, Jiang C, et al. Femtosecond laser precision machining of micropores in single-mode fiber and sensing application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111425.

[23] Zhang S, Li S G, Wan X Y, et al. Ultrafast, high-resolution and large-size three-dimensional structure manufacturing through high-efficiency two-photon polymerization initiators[J]. Additive Manufacturing, 2021, 47: 102358.

[24] Faraji R Z, Prewett P D, Davies G J. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays[J]. Microsystems & Nanoengineering, 2021, 7: 71.

[25] Cardenas-Benitez B, Eschenbaum C, Mager D, et al. Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model[J]. Microsystems & Nanoengineering, 2019, 5: 38.

[26] Martella D, Nocentini S, Nuzhdin D, et al. Photonic microhand with autonomous action[J]. Advanced Materials, 2017, 29(42): 1704047.

[27] 许兵. 功能化微流控芯片的飞秒激光高效集成技术研究[D]. 合肥:中国科学技术大学,2018: 1-112.

    XuB. Research on high efficiency femtosecond laser integration of functional microfluidic chips[D]. Hefei: University of Science and Technology of China, 2018: 1-112.

[28] Wang X D, Yu H B, Yang T, et al. Density regulation and localization of cell clusters by self-assembled femtosecond-laser-fabricated micropillar arrays[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58261-58269.

[29] Vrancken N, Ghosh T, Anand U, et al. Nanoscale elastocapillary effect induced by thin-liquid-film instability[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2751-2758.

[30] 孙玉金. 液滴/气泡与微结构表面的粘附机制研究[D]. 徐州:中国矿业大学,2018: 109-111.

    SunY J. Study of adhesion mechanism between water droplet/bubbles and patterned surfaces[D]. Xuzhou: China University of Mining and Technology, 2018: 109-111.

[31] Li P W, Yu H B, Wang X D, et al. Self-assembled microcage fabrication for manipulating and selectively capturing microparticles and cells[J]. Optics Express, 2021, 29(7): 11144-11157.

杨婷, 孙丽娜, 代国朋, 吕孝峰, 王晓朵. 基于多光子聚合微笼阵列的单细胞捕获方法[J]. 中国激光, 2022, 49(24): 2407104. Ting Yang, Lina Sun, Guopeng Dai, Xiaofeng Lü, Xiaoduo Wang. Single Cell Capture Method Based on Multiphoton Polymerization Microcage Arrays[J]. Chinese Journal of Lasers, 2022, 49(24): 2407104.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!