光学学报, 2023, 43 (11): 1123001, 网络出版: 2023-06-13  

不同能量质子辐照诱发CCD图像传感器性能退化实验与分析

Experiment and Analysis of Performance Degradation of CCD Image Sensors Induced by Proton Radiation with Different Energy
作者单位
1 湘潭大学材料科学与工程学院,湖南 湘潭 411105
2 西北核技术研究所强脉冲辐射环境模拟与效应全国重点实验室,陕西 西安 710024
摘要
为了评估电荷耦合器件(CCD)在空间科学探测以及航天卫星成像等空间辐射环境中应用的可靠性,揭示了CCD转换增益以及线性饱和输出等重要性能参数的退化机制及其实验规律。辐照实验在质子回旋加速器上进行,质子能量为60 MeV和100 MeV,质子注量分别为1×1010 cm-2、5×1010 cm-2和1×1011 cm-2。将CCD的主要性能参数在两个不同能量质子辐照后进行比较,实验结果表明,CCD的性能参数对质子辐照产生的电离损伤和位移损伤非常敏感,辐照后转换增益和线性饱和输出明显下降,且暗信号尖峰和暗电流明显增大。此外,分析了质子辐照CCD诱发的电离损伤和位移损伤,给出了CCD性能参数退化与质子辐照能量和注量的变化关系曲线。
Abstract
Objective

As a photoelectric image sensor widely used in the field of aeronautics and astronautics, charge-coupled device (CCD) has attracted much attention due to its proton irradiation damage in the space environment. Performance degradation and function failure will be caused by irradiation damage when CCDs are applied to the orbiting satellite or the space imaging system. The irradiation damage effect of CCDs generally includes total ionizing dose, displacement effect, and single event effect. The total ionizing dose and displacement effect will cause permanent damage by influencing the semiconductor material in CCDs to induce oxide defects and interface defects. The single event effect will induce high charge density in the sensitive region of CCDs and disturb the output signal. The damage induced by the single event effect will be gradually recovered in the next signal transfer period. As an important factor causing CCD performance degradation in the space irradiation environment, proton irradiation damage is necessary to be studied, which is of significance to improve the reliability of CCD application in the space irradiation environment. We report the proton irradiation experiments of CCDs with different energy and fluence on proton cyclotrons. The degradation of CCD property parameters such as conversion gain, dark signal, and linear saturation output induced by proton irradiation is analyzed. We hope that our experiment and analysis can be helpful for designers to improve the reliability of CCD applications in space irradiation environments such as space exploration and satellite imaging.

Methods

CCD proton irradiation experiments with proton energy of 60 MeV and 100 MeV are carried out on Xi'an 200 MeV Proton Application Facility (XiPAF). The irradiation fluence is 1×1010, 5×1010, and 1×1011 cm-2, respectively. All pins of the CCD are offline and unbiased during irradiation. The CCD model used in this experiment is ICX285AL. The pixel size is 6.45 μm×6.45 μm, and the total number of effective pixels is 1392×1024. Its advantages of low noise and high sensitivity meet the requirements of proton irradiation experiments. The CCD parameter test is carried out on the irradiation effect parameter measurement system of photoelectric image sensors based on European standard EMVA1288. The measurement system is composed of a measurement host computer, integrating sphere, sample carrier, and darkroom. The laboratory temperature before and after irradiation is about 25 °C. In this study, the gray value of the dark field image measured in the irradiation effect measurement system of photoelectric image sensors is used as the output signal of the sensor. The value of conversion gain is calculated by the curve of variance gray value and mean gray value, and the dark field image is used to analyze the change in dark signal spike before and after irradiation.

Results and Discussions

In this study, experiments of proton irradiation of 60 MeV and 100 MeV on CCDs are carried out to analyze the experimental law of CCD performance degradation induced by proton irradiation. The CCD linear part slope of the photon transfer curve produces a certain extent of reduction because the output amplifier of CCDs can be damaged by proton irradiation, which indicates that the conversion gain of CCDs decreases along with the increase in the irradiation fluence (Fig. 3 and Fig. 4). The linear saturation output of CCDs also degrades after proton irradiation with different energy because proton irradiation produces a high concentration of oxide defects and interfacial trapped charge in the CCDs (Fig. 6). In addition, with the increase in irradiation fluence, both conversion gain and linear saturation output degrade to some extent, and proton irradiation with higher energy will induce more serious degradation of conversion gain and linear saturation output than that with lower energy (Fig. 5 and Fig. 6). The study of dark signal shows that the quantity of dark signal spike increases significantly after proton irradiation, and the density of dark signal spike increases with higher energy under irradiation (Fig. 7 and Fig. 8). The dark current of CCDs under proton irradiation raises with the increase in the irradiation fluence, which indicates that both the bulk dark current and surface dark current generated by proton irradiation cannot be ignored (Fig. 9). Furthermore, higher irradiation energy is accompanied by greater increase in dark current. The CCDs irradiated with protons produce ionizing energy loss (IEL) and non-ionizing energy loss (NIEL). The IEL and NIEL are used to evaluate proton irradiation damage of CCDs. Proton ionization damage and proton displacement damage are related to IEL and NIEL, respectively. Overall, the IEL and NIEL induced by proton irradiation of 60 MeV are greater than those induced by proton irradiation of 100 MeV.

Conclusions

The experiments of high energy proton irradiation of 60 MeV and 100 MeV on XiPAF are introduced in this study, and the experimental law of CCD performance degradation induced by proton irradiation is analyzed. The conversion gain, dark signal, and linear saturation output of CCDs degrade obviously, and the dark current significantly increases after proton irradiation. Under the same irradiation fluence, the degradation of conversion gain and linear saturation output induced by proton irradiation of 60 MeV is more serious than that by proton irradiation of 100 MeV, and more dark signal spikes and larger dark currents are produced. The degradation of the above parameters indicates that CCD performance will be seriously affected by proton irradiation. The results show that CCDs are very sensitive to the damage caused by proton irradiation as an image sensor working in the space environment, and the study provides a reference for the research on the damage mechanism of CCD high energy proton irradiation.

1 引言

电荷耦合器件(CCD)作为一种以光注入或电子注入的方式产生电荷、通过在器件栅极加偏压来存储电荷,并运用耗尽层耦合原理与输出放大器进行电荷的传递与输出的光电图像传感器,具有小尺寸、轻质量、低功耗、高量子效率、高图像分辨率和宽动态范围的优点,被广泛应用于航天探测、空间扫描以及卫星观测等领域1。然而,由于空间环境具有特殊性,当CCD应用于在轨卫星或航天成像系统时,CCD会产生由辐照损伤引起的性能退化甚至是功能失效现象。CCD的辐照损伤效应一般包括总剂量效应、位移效应和单粒子瞬态效应2-5

总剂量效应和位移效应会通过影响CCD中的半导体材料诱发氧化物缺陷或界面缺陷产生,造成永久性损伤;单粒子瞬态效应会在CCD灵敏区域产生高电荷密度而扰动输出信号,但其造成的损伤会随时间推移逐渐恢复6。质子辐照损伤是空间辐射环境中引起CCD性能退化的重要因素,因此研究质子辐照损伤对提高CCD在空间辐射环境中应用的可靠性具有重要意义。

国内外均开展了CCD辐照效应的实验研究。Janesick等5首先从科学用CCD的辐照实验中发现了辐照效应诱发传感器损伤的现象。Hopkinson等47-10对质子和60Co γ射线辐照CCD诱发暗电流、电荷转移效率等性能参数退化的机理进行分析。Germanicus等11针对商用CCD开展质子辐照实验,分析了暗信号的退化规律,并提出一种基于马歇尔法预测暗信号退化规律的方法。王祖军等612-13开展了TCD线阵CCD质子和60Co γ辐照实验,研究了辐照后电荷转移效率以及暗信号等辐照敏感参数的退化机理;近年来,该团队开展了CCD的中子以及中高能量质子辐照实验,研究了中子和不同能量质子辐照面阵CCD诱发损伤的实验规律和机理14-16。于庆奎等17开展了不同注量下质子和γ射线辐照CCD的实验,研究了评估CCD位移损伤的地面模拟实验方法。文林等18开展了面阵CCD辐照实验,分析了质子和γ射线辐照下诱发CCD光响应退化的机制。

虽然国内国外都开展了大量质子辐照实验来研究CCD的辐照损伤效应,但关于质子辐照CCD后引发的转换增益和线性饱和输出退化现象的研究报道相对较少。为了提高CCD在辐射环境中的工作性能,本文介绍了在西安200 MeV质子应用装置(XiPAF)上开展的CCD质子辐照实验,并对辐照损伤引起的转换增益和线性饱和输出退化现象进行分析。通过开展CCD在2个不同能量、3个不同注量下的质子辐照实验,比较辐照前后转换增益、线性饱和输出以及暗信号的变化,深入研究质子辐照引起CCD各项性能参数退化的实验规律和损伤机理。

2 辐照实验

在XiPAF上分别开展了质子能量为60 MeV和100 MeV的CCD质子辐照实验,质子辐照注量分别为1×1010 cm-2、5×1010 cm-2和1×1011 cm-2图1为辐照实验原理示意图。CCD的所有引脚在辐照过程中处于无偏置的离线状态。本实验使用的CCD型号均为ICX285AL,该CCD是日本Sony公司生产的一款行间转移型科学级面阵图像传感器,像元大小为6.45 μm×6.45 μm,像元总数为1434×1050,有效像元总数共有1392×1024个,输出放大器的灵敏度达到1300 mV(1/30 s),在500~600 nm范围内量子效率达到60%以上,具有输出噪声低、灵敏度高的优点19

图 1. 辐照实验原理示意图

Fig. 1. Schematic of irradiation experiment

下载图片 查看所有图片

CCD的参数测试在基于欧洲标准EMVA1288搭建的光电图像传感器辐照效应参数测试系统上进行,测试系统由测试上位机、积分球、样品载台、暗室等组成,开展辐照前后的测试时实验室温度在25 ℃左右。

3 实验结果与分析

3.1 转换增益

对每个光电子产生的信号进行测定,可得到传感器的转换增益,它是高灵敏度光电传感器的重要表征参数之一。转换增益表示传感器将光信号转换为电信号的转换系数20,其定义为

g=x(ηΦ)

式中:η为量子效率;Φ为传感器积分时间内入射光子的数量;x为传感器信号均值。在CCD中,元件之间的光学孔径变化是由器件制造过程中的光刻变化引起的,通常可追溯到掩模。由重叠的多晶硅栅极引起的干涉效应也可能导致孔径不均匀,这是因为层厚度的细微变化会导致单色光传输的巨大变化。然而,CCD的转换增益没有固有的像素到像素的可变性,因为CCD中所有的电荷包都由输出放大器读出。在实践中,通常采用绘制传感器信号的均值-方差曲线来测定转换增益。传感器信号均值x很容易计算,方差值S2的计算公式20

S2=1N-1i=1Nxi-x¯2

式中:N为采样数量,对于传感器阵列的单个像元,N也可视为帧数。本实验以光电图像传感器辐照效应参数测试系统测得的暗场图像的灰度值为传感器信号16图2所示为方差灰度值与均值灰度值的关系曲线,也称作光子传递曲线21。其中,slop是曲线线性部分的拟合斜率,即转换增益。

图 2. 质子辐照前CCD方差灰度值与均值灰度值的关系

Fig. 2. Relationship between variance gray value and mean gray value before proton irradiation

下载图片 查看所有图片

图3图4所示分别为60 MeV和100 MeV质子辐照前后CCD方差灰度值与均值灰度值的关系。从图3图4可以看出,随着辐照注量的增加,CCD的光子传递曲线产生了退化,光子传递曲线的线性部分斜率略微减小,这说明CCD的转换增益随着辐照注量的增加而减小。图5所示为CCD转换增益与质子辐照能量和注量的关系。质子通过库仑相互作用与半导体器件相互作用并沉积电离能和非电离能,沉积的电离能和非电离能是质子在半导体中诱发辐照损伤的主要因素22。受到质子辐照的CCD会产生由质子电离能损失(IEL)诱发的电离损伤和由质子非电离能损失(NIEL)诱发的位移损伤。CCD 的转换增益下降主要发生在光敏感区域、移位寄存器区域以及输出放大器3个部分,而CCD的信号电荷是在光敏感区域形成的16。光信号在CCD像素单元中转化为电信号的过程会受到质子辐照的影响,产生信号电荷损失。位移损伤会导致移位寄存器区域的信号电荷转移过程中的损失增加。CCD的输出放大器主要由易受电离辐照损伤影响的金属-氧化物-半导体(MOS)晶体管组成,因此输出放大器会产生因质子电离损伤而引起的损伤,从而导致信号电荷损失6。质子辐照引起的转换增益退化主要是因为上述信号电荷损失。质子电离损伤与IEL有关,而质子位移损伤与NIEL有关。当质子能量从1000 MeV降低到0.1 MeV时,由质子辐照引起的IEL和NIEL都会增加23-24。从图5可以看出,在相同的质子辐照注量下,60 MeV质子辐照引起的转换增益退化比100 MeV质子辐照引起的增益退化更为严重,这是因为60 MeV质子辐照引起的IEL和NIEL大于100 MeV质子辐照引起的IEL和NIEL23-24

图 3. 60 MeV质子辐照前后CCD方差灰度值与均值灰度值的关系

Fig. 3. Relationship between variance gray value and mean gray value before and after 60 MeV proton irradiation

下载图片 查看所有图片

图 4. 100 MeV质子辐照前后CCD方差灰度值与均值灰度值的关系

Fig. 4. Relationship between variance gray value and mean gray value before and after 100 MeV proton irradiation

下载图片 查看所有图片

图 5. 转换增益与质子辐照能量和注量的关系

Fig. 5. Relationship between conversion gain with proton irradiation energy and proton fluence

下载图片 查看所有图片

3.2 线性饱和输出

CCD的输出放大器作为信号处理和传输的关键部位,通常用饱和输出来衡量放大器的性能。饱和输出是方差灰度值与辐照程度之间的测量关系的最大值25。线性饱和输出表示方差灰度值随辐照变化的线性范围内的最大信号输出。图6所示为线性饱和输出与质子辐照注量的关系,可以看出,线性饱和输出也会随着质子辐照注量的增加而降低,这是因为CCD的输出放大器主要由MOS晶体管组成,因此其饱和输出不仅与转换增益有关,还受栅极氧化层以及Si/SiO2的界面态影响。在质子辐照条件下,质子会电离CCD输出放大器中的原子,在氧化物中产生电子-空穴对,由此产生的多数载流子会导致晶体管特定区域的电荷密度增加,从而导致CCD的饱和输出降低。在电子-空穴对产生后,栅极会聚集大量电子,而空穴将向Si/SiO2界面漂移,部分空穴到达Si/SiO2界面时会被捕获形成界面陷阱电荷,栅极氧化层也会俘获正电荷,导致沟道界面反转,进而使得MOS晶体管在关断状态下产生漏电流6。高密度的氧化物陷阱和界面陷阱电荷会降低载流子迁移率,并且使晶体管的阈值电压发生偏移,总阈值电压偏移ΔVth是氧化物陷阱和界面陷阱电荷引起的阈值电压漂移之和26,其表达式为

ΔVth=ΔVot+ΔVitΔVot,it=-0toxρot,it(x)xdx

式中:ΔVotΔVit分别为氧化物陷阱引起的阈值电压漂移和界面陷阱电荷引起的阈值电压漂移;tox为氧化物厚度;ρot,it为辐射诱发的氧化物陷阱电荷或界面陷阱电荷的电荷量分布。载流子迁移率以及阈值电压的变化会导致CCD空间电荷区减小以及寄存器的信号转移电荷数量下降,因此质子辐照会导致线性饱和输出降低。从图6还可以看出,在相同注量下,60 MeV质子辐照引起的线性饱和输出下降比100 MeV质子辐照引起的线性饱和输出下降更严重,这也是因为60 MeV质子辐照诱发的NIEL和IEL大于100 MeV质子辐照诱发的NIEL和IEL。

图 6. 线性饱和输出与质子辐照注量的关系

Fig. 6. Relationship between linear saturation output with proton irradiation fluence

下载图片 查看所有图片

3.3 暗信号尖峰

在外界既不施加光照又无偏置电压的情况下,CCD输出的信号称为暗信号。CCD正常工作时MOS电容处于不饱和状态,由半导体材料本身原子振动导致的电子跃迁使得MOS电容随时间的推移趋于饱和,因此在外界既不施加光照又无偏置电压的情况下也会产生少量暗信号27

图7图8所示分别为经60 MeV和100 MeV质子辐照后,在不同辐照注量下暗信号尖峰(Gd)的变化情况。CCD的暗信号对质子辐照非常敏感,暗信号主要包括质子电离损伤引起的表面暗信号和质子位移损伤引起的体暗信号6。质子辐照损伤引起的缺陷密度与质子辐照能量成反比。由图7图8可知,质子辐照前CCD像元阵列中没有出现暗信号尖峰,而随着质子辐照注量的增加,CCD像元阵列中暗信号尖峰的数量显著增加。暗信号尖峰表示在辐照或未辐照像素区域中像素暗信号数值明显高于普通像素,在图像上呈白斑或白点1628。其主要成因是质子辐照诱使CCD产生体缺陷,使部分电子从高能级跃迁到低能级,从而释放能量,导致暗信号增多10。对比图7图8还可以看出,CCD在60 MeV质子辐照下产生的暗信号尖峰幅值以及密度都大于100 MeV质子辐照下的相应数值。不同能量质子辐照前后,CCD像元阵列中暗信号的增幅不同,这是因为暗信号的增幅与质子在半导体材料中产生的IEL和NIEL有关,IEL诱发的CCD电离损伤和NIEL诱发的CCD位移损伤会导致暗信号显著增多,而IEL和NIEL与质子辐照能量成反比,能量越小,IEL和NIEL越大,辐照损伤越严重,暗信号的增幅越大23-24

图 7. 60 MeV质子辐照后,不同注量下CCD像元阵列中暗信号尖峰的变化情况。(a)辐照前;(b)质子注量为1×1010 cm-2;(c)质子注量为1×1011 cm-2

Fig. 7. Changes of dark signal spike in CCD pixel array after 60 MeV proton irradiation under different fluence. (a) Before irradiation; (b) proton fluence is 1×1010 cm-2; (c) proton fluence is 1×1011 cm-2

下载图片 查看所有图片

图 8. 100 MeV质子辐照后,不同注量下CCD像元阵列中暗信号尖峰的变化情况。(a)辐照前;(b)质子注量为1×1010 cm-2;(c)质子注量为1×1011 cm-2

Fig. 8. Changes of dark signal spike in CCD pixel array after 100 MeV proton irradiation under different fluence. (a) Before irradition; (b) proton fluence is 1×1010 cm-2; (c) proton fluence is 1×1011 cm-2

下载图片 查看所有图片

3.4 暗电流

暗电流是指在没有光照射的状态下,在光电器件内部流动的电流29图9所示为CCD的暗电流与质子辐照注量的关系,可以看出,暗电流会随着质子辐照注量的增加而明显增大。质子辐照损伤会导致CCD暗电流增大,电离损伤产生表面暗电流,位移损伤产生体暗电流,对于面阵CCD而言,电离损伤产生的表面暗电流和位移损伤产生的体暗电流都不可忽略6

图 9. 暗电流与质子辐照能量和注量的关系

Fig. 9. Relationship between dark current with proton irradiation energy and fluence

下载图片 查看所有图片

质子电离损伤会诱发CCD栅极氧化层缺陷以及Si和SiO2的界面态使得电子产生跃迁,进而导致表面暗电流增大,根据Hopkinson9的理论,表面暗电流的计算公式可写为

Js=q(σnσp)1/2νthkDtπTni/2

式中:q为电荷量;σnσp分别为辐照引起的电子和空穴的捕获截面;νth为热生长速率;k为玻尔兹曼常数;T为温度;Dt为电离损伤引起的缺陷密度;ni为本征自由电子浓度。

质子位移损伤会使CCD产生体缺陷,进而导致体暗电流增加。令τ0为耗尽层载流子有效寿命6,则

τ0=σnexp(Et-Ei)/kT+σpexp-(Et-Ei)/kT2σnσpνthNt

式中:EtEi分别为缺陷能级和本征费米能级;Nt为位移损伤引起的体缺陷密度。耗尽区产生率30

G=ni2τ0

则体暗电流的计算公式为

Jb=qnixd2τ0

式中:xd为耗尽层深度。

图9还可以看到,在相同质子辐照注量下,60 MeV质子引起CCD的暗电流增量大于100 MeV质子引起的暗电流增量,这同样也是因为60 MeV质子诱发的IEL和NIEL大于100 MeV质子诱发的IEL和NIEL。

4 总结

介绍了在XiPAF上开展的60 MeV和100 MeV高能质子辐照实验,研究了质子辐照诱发CCD性能退化的实验规律。在质子辐照后,CCD的转换增益、暗信号以及线性饱和输出产生明显退化,且暗电流在质子辐照后明显增大。在相同注量下,60 MeV质子辐照诱发的转换增益和线性饱和输出退化比在100 MeV质子辐照下更严重,产生更多的暗信号尖峰以及更大的暗电流,上述参数的退化表明CCD性能会受到质子辐照的严重影响。本次实验结果表明,CCD作为工作在空间辐射环境中的图像传感器件,对质子辐照产生的损伤非常敏感。因此,本研究结果为开展CCD高能质子辐照损伤机理研究提供实验数据参考。

下一步将在XiPAF上继续深入开展不同能量质子对不同类型CCD的辐照实验,以进一步研究CCD质子辐照后的转换增益及线性饱和输出等辐射敏感参数的退化规律和损伤机理。

参考文献

[1] 张坤. 国外星用CCD图像传感器的研制现状[J]. 中国电子科学研究院学报, 2007, 2(3): 324-328.

    Zhang K. Abroad development status of CCD image sensors usedin secondary planet[J]. Journal of China Academy of Electronics and Information Technology, 2007, 2(3): 324-328.

[2] 王祖军, 黄绍艳, 刘敏波, 等. CCD位移辐射效应损伤机理分析[J]. 半导体光电, 2010, 31(2): 175-179.

    Wang Z J, Huang S Y, Liu M B, et al. Analysis of the displacement damage mechanism of radiation effects in CCD[J]. Semiconductor Optoelectronics, 2010, 31(2): 175-179.

[3] 王祖军, 唐本奇, 肖志刚, 等. CCD电离辐射效应损伤机理分析[J]. 核电子学与探测技术, 2009, 29(3): 565-570, 619.

    Wang Z J, Tang B Q, Xiao Z G, et al. The analysis of mechanism on ionization radiation damage effects on CCD[J]. Nuclear Electronics & Detection Technology, 2009, 29(3): 565-570, 619.

[4] Hopkinson G R, Dale C J, Marshall P W. Proton effects in charge-coupled devices[J]. IEEE Transactions on Nuclear Science, 1996, 43(2): 614-627.

[5] Janesick J, Elliott T, Pool F. Radiation damage in scientific charge-coupled devices[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 572-578.

[6] 王祖军. 电荷耦合器件质子辐照损伤实验及数值模拟研究[D]. 北京: 清华大学, 2011.

    WangZ J. Research on proton radiation effects on charge coupled device with experiment and simulation methods[D]. Beijing: Tsinghua University, 2011.

[7] Hopkinson G R, Mohammadzadeh A. Comparison of CCD damage due to 10- and 60-MeV protons[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1960-1967.

[8] Hopkinson G R. Proton-induced changes in CTE for n-channel CCDs and the effect on star tracker performance[J]. IEEE Transactions on Nuclear Science, 2000, 47(6): 2460-2465.

[9] HopkinsonG R. Radiation-induced dark current increases in CCDs[C]//RADECS 93. Second European Conference on Radiation and its Effects on Components and Systems, September 13-16, 1993, Saint Malo, France. New York: IEEE Press, 2002: 401-408.

[10] Hopkinson G R. Cobalt60 and proton radiation effects on large format, 2-D, CCD arrays for an Earth imaging application[J]. IEEE Transactions on Nuclear Science, 1992, 39(6): 2018-2025.

[11] Germanicus R, Barde S, Dusseau L, et al. Evaluation and prediction of the degradation of a COTS CCD induced by displacement damage[J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 2830-2835.

[12] 王祖军, 唐本奇, 肖志刚, 等. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析[J]. 物理学报, 2010, 59(6): 4136-4142.

    Wang Z J, Tang B Q, Xiao Z G, et al. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation[J]. Acta Physica Sinica, 2010, 59(6): 4136-4142.

[13] 王祖军, 张勇, 唐本奇, 等. TCD132D线阵CCD总剂量效应的实验分析[J]. 电子器件, 2010, 33(1): 18-21.

    Wang Z J, Zhang Y, Tang B Q, et al. Analysis of experiments on total dose radiation effects on TCD132D linear CCD[J]. Chinese Journal of Electron Devices, 2010, 33(1): 18-21.

[14] 王祖军, 薛院院, 王迪, 等. 西安200 MeV质子应用装置200 MeV质子辐照CCD的实验结果与分析[J]. 现代应用物理, 2021, 12(2): 020604.

    Wang Z J, Xue Y Y, Wang D, et al. Charge coupled device irradiated by 200 MeV protons at Xi’an 200 MeV proton application facility[J]. Modern Applied Physics, 2021, 12(2): 020604.

[15] Wang Z J, Xue Y Y, Xu R, et al. Charge transfer inefficiency increase of the CCD detector induced by proton and neutron irradiations[J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 978: 164431.

[16] Wang Z J, Xue Y Y, Zhang F Q, et al. Radiation damage evaluation of the CCD detector induced by high energy protons[J]. Nuclear Instruments and Methods in Physics Research Section A, 2019, 924: 219-224.

[17] 于庆奎, 唐民, 朱恒静, 等. 用10 MeV质子和钴60 γ射线进行CCD空间辐射效应评估[J]. 航天器环境工程, 2008, 25(4): 391-394, 300.

    Yu Q K, Tang M, Zhu H J, et al. Experimental investigation on radiation damage on CCD by 10 MeV proton and cobalt 60 gamma[J]. Spacecraft Environment Engineering, 2008, 25(4): 391-394, 300.

[18] 文林, 李豫东, 郭旗, 等. γ射线及质子辐照导致CCD光谱响应退化的机制[J]. 发光学报, 2018, 39(2): 244-250.

    Wen L, Li Y D, Guo Q, et al. Mechanism of spectrum response degradation in CCD’s exposed to γ-ray and proton[J]. Chinese Journal of Luminescence, 2018, 39(2): 244-250.

[19] 孙茂多, 董全林, 赵伟霞, 等. 基于CPLD的面阵CCD驱动电路设计[J]. 现代电子技术, 2014, 37(23): 142-145.

    Sun M D, Dong Q L, Zhao W X, et al. Design of array CCD driving circuit based on CPLD[J]. Modern Electronics Technique, 2014, 37(23): 142-145.

[20] Beecken B P, Fossum E R. Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays[J]. Applied Optics, 1996, 35(19): 3471-3477.

[21] 冯婕, 李豫东, 文林, 等. CMOS图像传感器光子转移曲线辐照后的退化机理[J]. 光学 精密工程, 2017, 25(10): 2676-2681.

    Feng J, Li Y D, Wen L, et al. Degradation mechanism for photon transfer curve of CMOS image sensor after irradiation[J]. Optics and Precision Engineering, 2017, 25(10): 2676-2681.

[22] Wang Z J, Xue Y Y, Guo X Q, et al. Measurement and analysis of the conversion gain degradation of the CIS detectors in harsh radiation environments[J]. Nuclear Instruments and Methods in Physics Research Section A, 2018, 895: 35-39.

[23] Xue Y Y, Wang Z J, Liu J, et al. Numerical calculation and analysis of proton radiation effects on CCD based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2018, 30(4): 044001.

[24] Jun I, Xapsos M A, Messenger S R, et al. Proton nonionizing energy loss (NIEL) for device applications[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1924-1928.

[25] European Machine Vision Association. [S/OL]. (2016-12-30)[2022-11-05]. https://www.emva.org/wp-content/uploads/EMVA1288-3.1a.pdf.

[26] Schwank J R, Shaneyfelt M R, Fleetwood D M, et al. Radiation effects in MOS oxides[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 1833-1853.

[27] 邹异松, 刘玉凤, 白廷柱. 光电成像原理[M]. 北京: 北京理工大学出版社, 1997: 357.

    ZouY S, LiuY F, BaiT Z. Photoelectricity imaging theory[M]. Beijing: Beijing Institute of Technology Press, 1997: 357.

[28] 王祖军, 薛院院, 刘卧龙, 等. CMOS图像传感器西安200 MeV质子应用装置H-辐照效应实验研究[J]. 现代应用物理, 2021, 12(3): 030604.

    Wang Z J, Xue Y Y, Liu W L, et al. H- beams irradiation effect of CMOS image sensor at Xi’an 200 MeV proton application facility[J]. Modern Applied Physics, 2021, 12(3): 030604.

[29] 刘伟胜. 太阳能技术用语集[M]. 石家庄: 河北科学技术出版社, 1989: 391.

    LiuW S. Energy technology glossary[M]. Shijiazhuang: Hebei Science & Technology Press, 1989: 391.

[30] Hardy T D, Deen M J, Murowinski R. Effects of radiation damage on scientific charge coupled devices[J]. Advances in Imaging and Electron Physics, 1999, 106: 1-96.

黄港, 王祖军, 吕伟, 聂栩, 赖善坤, 晏石兴, 王敏文, 卓鑫, 于俊英, 王忠明. 不同能量质子辐照诱发CCD图像传感器性能退化实验与分析[J]. 光学学报, 2023, 43(11): 1123001. Gang Huang, Zujun Wang, Lü Wei, Xu Nie, Shankun Lai, Shixing Yan, Minwen Wang, Xin Zhuo, Junying Yu, Zhongming Wang. Experiment and Analysis of Performance Degradation of CCD Image Sensors Induced by Proton Radiation with Different Energy[J]. Acta Optica Sinica, 2023, 43(11): 1123001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!