人工晶体学报, 2023, 52 (10): 1773, 网络出版: 2023-10-28  

铜锑硫薄膜太阳电池的数值模拟研究

Numerical Simulation of CuSbS2 Thin Film Solar Cells
作者单位
1 渤海大学物理科学与技术学院, 锦州 121013
2 渤海大学化学与材料工程学院, 锦州 121013
摘要
用SCAPS构建了铜锑硫薄膜太阳电池模型, 计算了器件的性能。分别研究了吸收层厚度、载流子浓度、缺陷密度和背电极功函数对器件性能的影响。结果表明, 过薄的吸收层对绿光和红光吸收不充分, 1.5~3 μm厚的吸收层能满足光谱吸收要求。当受主浓度为2×1018 cm-3时, 器件光电转换效率最高。缺陷密度大于10-14 cm-3时, 器件的光电转换效率急剧降低。贫铜富硫气氛制备铜锑硫可以提高受主浓度, 减小开路电压亏损, 也可以抑制硫空位缺陷形成, 从而提高器件的光电转换效率。功函数较高的材料能降低背电极势垒, 减少载流子在背电极复合。材料参数优化后, 器件的光电转换效率最高为21.74%。
Abstract
The model of copper-antimony-sulfur (CuSbS2) thin film solar cell was constructed, and the performance of the device was calculated by SCAPS. The effects of absorption layer thickness, carrier concentration, defect density, and back contact work function on the device performance were investigated. The results show that the green and red light are not fully absorbed by too thin absorption layer, and the absorption layer with the thickness of 1.5 μm to 3 μm can meet spectral absorption requirements. When the acceptor concentration is 2×1018 cm-3, the photoelectricity conversion efficiency (PCE) of the device is the highest. When the defect density is larger than 10-14 cm-3, the PCE of the device decreases sharply. CuSbS2 prepared in a copper-poor and sulfur-rich atmosphere can increase the accepter concentration, reduce the open circuit voltage defect, and inhibit the formation of sulfur vacancy defects, thus improving the PCE of the device. High work function materials can decrease the back contact barrier and reduce carrier recombination. After the material parameters have been optimized, the highest PCE of the device is 21.74%.
参考文献

[1] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 59)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(1): 3-12.

[2] WELCH A W, BARANOWSKI L L, ZAWADZKI P, et al. Accelerated development of CuSbS2 thin film photovoltaic device prototypes[J]. Progress in Photovoltaics: Research and Applications, 2016, 24(7): 929-939.

[3] YANG B, WANG L A, HAN J, et al. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study[J]. Chemistry of Materials, 2014, 26(10): 3135-3143.

[4] ZHAO M H, YU J S, FU L J, et al. Thin-film solar cells based on selenized CuSbS2 absorber[J]. Nanomaterials, 2021, 11(11): 3005.

[5] SAADAT M, AMIRI O, MAHMOOD P H. Analysis and performance assessment of CuSbS2-based thin-film solar cells with different buffer layers[J]. The European Physical Journal Plus, 2022, 137(5): 582.

[6] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361/362: 527-532.

[7] BURGELMAN M, DECOCK K, KHELIFI S, et al. Advanced electrical simulation of thin film solar cells[J]. Thin Solid Films, 2013, 535: 296-301.

[8] LIU F, ZHU J, WEI J F, et al. Numerical simulation: toward the design of high-efficiency planar perovskite solar cells[J]. Applied Physics Letters, 2014, 104(25): 253508.

[9] LI W M, LI W J, FENG Y, et al. Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells[J]. Solar Energy, 2019, 180: 207-215.

[10] ZHANG J Y, WANG T, YAO B, et al. Doping behavior of Zn in CdS and its effect on the power conversion efficiency of the Cu2ZnSn(S, Se)4 solar cell[J]. The Journal of Physical Chemistry C, 2021, 125(49): 27449-27457.

[11] NYKYRUY L I, YAVORSKYI R S, ZAPUKHLYAK Z R, et al. Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties[J]. Optical Materials, 2019, 92: 319-329.

[12] KARTHICK S, VELUMANI S, BOUCL J. Experimental and SCAPS simulated formamidinium perovskite solar cells: a comparison of device performance[J]. Solar Energy, 2020, 205: 349-357.

[13] 肖建敏, 袁吉仁, 王 鹏, 等. 铅基卤化物钙钛矿太阳电池的模拟研究[J]. 人工晶体学报, 2022, 51(6): 1051-1058.

[14] LI C R, YAO B, LI Y F, et al. Impact of sequential annealing step on the performance of Cu2ZnSn(S, Se)4 thin film solar cells[J]. Superlattices and Microstructures, 2016, 95: 149-158.

[15] SINGH P K, RAI S, LOHIA P, et al. Comparative study of the CZTS, CuSbS2 and CuSbSe2 solar photovoltaic cell with an earth-abundant non-toxic buffer layer[J]. Solar Energy, 2021, 222: 175-185.

[16] SAADAT M, AMIRI O, MAHMOOD P H. Potential efficiency improvement of CuSb(S1-x, Sex)2 thin film solar cells by the Zn(O, S) buffer layer optimization[J]. Solar Energy, 2021, 225: 875-881.

[17] MICHAELSON H B. The work function of the elements and its periodicity[J]. Journal of Applied Physics, 1977, 48(11): 4729-4733.

[18] PATEL M, RAY A. Enhancement of output performance of Cu2ZnSnS4 thin film solar cells: a numerical simulation approach and comparison to experiments[J]. Physica B: Condensed Matter, 2012, 407(21): 4391-4397.

[19] 周 涛, 李 媛, 陆晓东, 等. 背表面沟槽型高效背接触太阳电池的输出特性研究[J]. 渤海大学学报(自然科学版), 2019, 40(4): 371-377+384.

[20] WADA T, MAEDA T. Optical properties and electronic structures of CuSbS2, CuSbSe2, and CuSb(S1-xSex)2 solid solution[J]. Physica Status Solidi C, 2017, 14(6): 1600196.

[21] BANU S, AHN S J, AHN S K, et al. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks[J]. Solar Energy Materials and Solar Cells, 2016, 151: 14-23.

佟蕾, 国嘉嵘, 李清, 苗佳怡, 李春然, 钟敏. 铜锑硫薄膜太阳电池的数值模拟研究[J]. 人工晶体学报, 2023, 52(10): 1773. TONG Lei, GUO Jiarong, LI Qing, MIAO Jiayi, LI Chunran, ZHONG Min. Numerical Simulation of CuSbS2 Thin Film Solar Cells[J]. Journal of Synthetic Crystals, 2023, 52(10): 1773.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!