光散射学报, 2023, 35 (3): 206, 网络出版: 2023-11-17  

金属烯碳纳米囊在SERS中的应用研究进展

Advances in application of metalgraphitic nanocapsules in SERS
作者单位
湖南大学, 化学化工学院, 化学生物传感与计量学国家重点实验室, 分子科学与生物医学实验室, 湖南, 长沙, 410082
摘要
表面增强拉曼光谱(SERS)技术广泛应用于表面/界面科学、光谱学、生化检测、成像示踪等领域。金属烯碳纳米囊是一类由烯碳壳层包裹金属核组成的核壳纳米颗粒, 由于金属烯碳纳米囊具有高SERS灵敏度, 在复杂和极端的生化环境下优异的稳定性和光学性质, 因此在生化检测分析和成像示踪等领域备受关注。超薄烯碳壳层固有的化学惰性可以保护金属内核免受光生热电子、活性氧以及酶等外部因素的破坏, 从而使金属烯碳纳米囊展现出超稳定的拉曼信号。此外, 烯碳壳层的多个拉曼特征峰位(D、G、2D)可作为拉曼信号和内标信号, 进一步提高了拉曼定量检测的准确度。值得注意的是2D峰作为拉曼静默区域内的信号峰有利于减少体内生物分子的干扰。本文首先介绍了金属烯碳纳米囊的制备原理和基本性质, 概述了基于金属烯碳纳米囊的SERS检测和成像中的应用进展, 最后展望了金属烯碳纳米囊在疾病诊疗的前景和潜力。
Abstract
Surface-enhanced Raman Scattering (SERS) has been widely used in the field of surface / interface science, spectroscopy, biochemical detection, trace imaging. The metal graphitic nanocapsules were a kind of core-shell nanoparticles whose graphitic shell isolated metal core. It has attracted research attention in the field of biochemical detection analysis and trace imaging due to their high SERS sensitivity, excellent stability and optical properties in complex and harsh biochemical environments. The inherent chemical inertness of the ultrathin graphitic shell could protect the metal core from external factors such as photogenerated hot electrons, reactive oxygen species, and enzymes, which exhibited ultra-stable Raman signal output. Moreover, the multiple characteristic Raman bands (D, G, 2D) of the graphitic shell could be used as Raman signals and internal standard signals to further improve the accuracy of Raman quantitative detection. Notably, the 2D peak as a signal band in the Raman silent region was beneficial to reduce the interference of biomolecules in vivo. This review first introduced the preparation and properties of metal graphitic nanocapsules, and then summarized the application of metal graphitic nanocapsules in detection and imaging based on the SERS. Finally, the prospects and potential of metal graphitic nanocapsules in theranostic were prospected.
参考文献

[1] WANG Y-H, ZHENG S, YANG W-M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water [J]. Nature, 2021, 600(7887): 81-85.

[2] SCHLüCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications [J]. Angewandte Chemie (International ed in English), 2014, 53(19): 4756-4795.

[3] ZHANG Y-J, ZE H, FANG P-P, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature Reviews Methods Primers, 2023, 3(1): 36.

[4] SHIN H, CHOI B H, SHIM O, et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers [J]. Nature Communications, 2023, 14(1): 1644.

[5] SUN H, CONG S, ZHENG Z, et al. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability [J]. Journal of the American Chemical Society, 2019, 141(2): 870-878.

[6] HAN X X, RODRIGUEZ R S, HAYNES C L, et al. Surface-enhanced Raman spectroscopy [J]. Nature Reviews Methods Primers, 2022, 1(1): 87.

[7] LANE L A, QIAN X, NIE S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging [J]. Chemical Reviews, 2015, 115(19): 10489-10529.

[8] LI S, XU J, WANG S, et al. Versatile metal graphitic nanocapsules for SERS bioanalysis [J]. Chinese Chemical Letters, 2019, 30(9): 1581-1592.

[9] XU L, ZHANG H, TIAN Y, et al. Modified photochemical strategy to support highly-purity, dense and monodisperse Au nanospheres on graphene oxide for optimizing SERS detection [J]. Talanta, 2020, 209: 120535.

[10] REN W, FANG Y, WANG E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids [J]. ACS Nano, 2011, 5(8): 6425-6433.

[11] KANCHANAPALLY R, SINHA S S, FAN Z, et al. Graphene oxide-gold nanocage hybrid platform for trace level identification of nitro explosives using a raman fingerprint [J]. The Journal of Physical Chemistry C, 2014, 118(13): 7070-7075.

[12] FAN W, LEE Y H, PEDIREDDY S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing [J]. Nanoscale, 2014, 6(9): 4843-4851.

[13] OUYANG L, HU Y, ZHU L, et al. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation [J]. Biosensors and Bioelectronics, 2017, 92: 755-762.

[14] QIU Y, DENG D, DENG Q, et al. Synthesis of magnetic Fe3O4-Au hybrids for sensitive SERS detection of cancer cells at low abundance [J]. Journal of Materials Chemistry B, 2015, 3(22): 4487-4495.

[15] HU F, LIN H, ZHANG Z, et al. Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for practical quantitative detection [J]. Scientific Reports, 2014, 4(1): 1-10.

[16] ARORA V, SOOD A, SHAH J, et al. Synthesis and characterization of thiolated pectin stabilized gold coated magnetic nanoparticles [J]. Materials Chemistry and Physics, 2016, 173: 161-167.

[17] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature, 2010, 464(7287): 392-395.

[18] QIU Z, ZHANG M, WU D Y, et al. Raman spectroscopic investigation on TiO2-N719 dye interfaces using Ag@ TiO2 nanoparticles and potential correlation strategies [J]. ChemPhysChem, 2013, 14(10): 2217-2224.

[19] ZHANG C, LIU X, XU Z, et al. Multichannel stimulus-responsive nanoprobes for H2O2 sensing in diverse biological milieus [J]. Analytical Chemistry, 2020, 92(18): 12639-12646.

[20] LIN X D, UZAYISENGA V, LI J F, et al. Synthesis of ultrathin and compact Au@ MnO2 nanoparticles for shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) [J]. Journal of Raman Spectroscopy, 2012, 43(1): 40-45.

[21] CHOPRA N, BACHAS L G, KNECHT M R. Fabrication and biofunctionalization of carbon-encapsulated Au nanoparticles [J]. Chemistry of Materials, 2009, 21(7): 1176-1178.

[22] TURCHENIUK K, BOUKHERROUB R, SZUNERITS S. Gold-graphene nanocomposites for sensing and biomedical applications [J]. Journal of Materials Chemistry B, 2015, 3(21): 4301-4324.

[23] UZAYISENGA V, LIN X-D, LI L-M, et al. Synthesis, characterization, and 3D-FDTD simulation of Ag@ SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Langmuir, 2012, 28(24): 9140-9146.

[24] GAN Z, ZHAO A, ZHANG M, et al. Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes [J]. Dalton Transactions, 2013, 42(24): 8597-8605.

[25] ZHANG X, ZHU Y, YANG X, et al. Multifunctional Fe3O4@ TiO2@ Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering [J]. Nanoscale, 2014, 6(11): 5971-5979.

[26] LI L, ZHAO A, WANG D, et al. Fabrication of cube-like Fe3O4@SiO2@Ag nanocomposites with high SERS activity and their application in pesticide detection [J]. Journal of Nanoparticle Research, 2016, 18(7): 178.

[27] KRAJCZEWSKI J, KUDELSKI A. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy [J]. Frontiers in Chemistry, 2019, 7: 410.

[28] YANG Y, LI S, BU H, et al. Metal Graphitic Nanocapsules for Theranostics in Harsh Conditions [J]. Frontiers in Chemistry, 2022, 10: 909110.

[29] LI S, YANG Y, WANG S, et al. Advances in metal graphitic nanocapsules for biomedicine [J]. Exploration (Beijing, China), 2022, 2(6): 20210223.

[30] ZHANG Y, ZOU Y, LIU F, et al. Stable graphene-isolated-au-nanocrystal for accurate and rapid surface enhancement Raman scattering analysis[J]. Analytical Chemistry, 2016, 88(21): 10611-10616.

[31] 朱兆田, 李圣凯, 宋明慧, 等人. 多功能金属石墨纳米囊的生物医学应用进展 [J]. 高等学校化学学报, 2021, 42(9): 2701-2716.(Zhu Z T, Li S K, Song M H, et al. Recent progress of versatile metal graphitic nanocapsules in biomedical application[J]. Chemical Journal of Chinese Universities, 2021,43(9):2701-2716.

[32] BYSTRZEJEWSKI M, CUDZIO S, HUCZKO A, et al. Carbon encapsulated magnetic nanoparticles for biomedical applications: Thermal stability studies [J]. Biomolecular Engineering, 2007, 24(5): 555-558.

[33] SADHASIVAM S, SAVITHA S, WU C-J, et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells [J]. International Journal of Pharmaceutics, 2015, 480(1): 8-14.

[34] SUN X, LI Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie (International ed in English), 2004, 43(5): 597-601.

[35] DING D, XU Y, ZOU Y, et al. Graphitic nanocapsules: design, synthesis and bioanalytical applications [J]. Nanoscale, 2017, 9(30): 10529-10543.

[36] YAN Z, PENG Z, TOUR J M. Chemical vapor deposition of graphene single crystals [J]. Accounts of Chemical Research, 2014, 47(4): 1327-1337.

[37] LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science (New York, NY), 2009, 324(5932): 1312-4.

[38] SUN X, TABAKMAN S M, SEO W S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals [J]. Angewandte Chemie (International ed in English), 2009, 48(5): 939-942.

[39] ZHANG Y, ZOU Y, LIU F, et al. Stable Graphene-Isolated-Au-Nanocrystal for Accurate and Rapid Surface Enhancement Raman Scattering Analysis [J]. Analytical Chemistry, 2016, 88(21): 10611-10616.

[40] LAI X F, ZOU Y X, WANG S S, et al. Modulating the Morphology of Gold Graphitic Nanocapsules for Plasmon Resonance-Enhanced Multimodal Imaging [J]. Analytical Chemistry, 2016, 88(10): 5385-5391.

[41] ZHANG L, ZHANG J, ZHENG Z, et al. Interaction-Transferable Graphene-Isolated Superstable AuCo Nanocrystal-Enabled Direct Cyanide Capture [J]. Analytical Chemistry, 2019, 91(14): 8762-8766.

[42] SONG Z L, ZHAO X H, LIU W N, et al. Magnetic graphitic nanocapsules for programmed DNA fishing and detection [J]. Small (Weinheim an der Bergstrasse, Germany), 2013, 9(6): 951-957.

[43] HAN Y, LI P, XU Y, et al. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules [J]. Small (Weinheim an der Bergstrasse, Germany), 2015, 11(7): 877-885.

[44] ZOU Y, ZHANG Y, XU Y, et al. Portable and Label-Free Detection of Blood Bilirubin with Graphene-Isolated-Au-Nanocrystals Paper Strip [J]. Analytical Chemistry, 2018, 90(22): 13687-13694.

[45] SONG Z L, DAI X, LI M, et al. Synthesis of amphiphilic graphitic silver nanoparticles with inherent internal standards: an efficient strategy for reliable quantitative SERS analysis in common fluids [J]. Chemical Communications (Cambridge, England), 2018, 54(62): 8618-8621.

[46] ZOU Y, HUANG S, LIAO Y, et al. Isotopic graphene-isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition [J]. Chemical Science, 2018, 9(10): 2842-2849.

[47] DONG Q, WANG X, HU X, et al. Simultaneous Application of Photothermal Therapy and an Anti-inflammatory Prodrug using Pyrene-Aspirin-Loaded Gold Nanorod Graphitic Nanocapsules [J]. Angewandte Chemie (International ed in English), 2018, 57(1): 177-181.

[48] DING S-Y, YI J, LI J-F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials [J]. Nature Reviews Materials, 2016, 1(6).

[49] ZHAO X H, ZHAO S Y, SONG Z L, et al. Alkyne functionalized graphene-isolated-Au-nanocrystal for the ratiometric SERS sensing of alkaline phosphatase with acetonitrile solvent as an internal standard [J]. Sens Actuator B-Chem, 2021, 331: 9.

[50] BIAN X, SONG Z L, QIAN Y, et al. Fabrication of Graphene-isolated-Au-nanocrystal Nanostructures for Multimodal Cell Imaging and Photothermal-enhanced Chemotherapy [J]. Scientific Reports, 2014, 4.

[51] SONG Z L, CHEN Z, BIAN X, et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging [J]. J Am Chem Soc, 2014, 136(39): 13558-13561.

[52] LI S K, ZHU Z T, CAI X Q, et al. Versatile Graphene-Isolated AuAg-Nanocrystal for Multiphase Analysis and Multimodal Cellular Raman Imaging(dagger) [J]. Chinese Journal of Chemistry, 2021, 39(6): 1491-1497.

[53] LI S, LI Z, HAO Q, et al. Ultrastable graphene isolated AuAg nanoalloy for SERS biosensing and photothermal therapy of bacterial infection [J]. Chinese Chemical Letters, 2023: 108636.

[54] MARKS H, SCHECHINGER M, GARZA J, et al. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care [J]. Nanophotonics, 2017, 6(4): 681-701.

[55] ZHANG Y, ZOU Y X, LIU F, et al. Stable Graphene-Isolated-Au-Nanocrystal for Accurate and Rapid Surface Enhancement Raman Scattering Analysis [J]. Analytical Chemistry, 2016, 88(21): 10611-10616.

[56] SONG Z L, DAI X, LI M R, et al. Synthesis of amphiphilic graphitic silver nanoparticles with inherent internal standards: an efficient strategy for reliable quantitative SERS analysis in common fluids [J]. Chemical Communications, 2018, 54(62): 8618-8621.

[57] LIU Z, LI S, YIN Z, et al. Stabilizing Enzymes in Plasmonic Silk Film for Synergistic Therapy of In Situ SERS Identified Bacteria [J]. Adv Sci (Weinh), 2022, 9(6): e2104576.

[58] SHEN W, TIANHUAN P, SHENGKAI L, et al. Natural interface-mediated self-assembly of graphene-isolated-nanocrystals for plasmonic arrays construction and personalized information acquisition [J]. Nano Research, 2022, 15(10): 9327-9333.

[59] ZHANG L, LIU F, ZOU Y, et al. Surfactant-Free Interface Suspended Gold Graphitic Surface-Enhanced Raman Spectroscopy Substrate for Simultaneous Multiphase Analysis [J]. Anal Chem, 2018, 90(19): 11183-11187.

[60] 唐文涛, 李圣凯, 王昚, 等人. 基于激光介导富集的表面增强拉曼分析 [J]. 高等学校化学学报, 2021, 42(10): 3054-3061.(Tang W T, Li S K, Wang S, et al. Laser-mediated envichment based surface enhanced raman analysis[J]. Chemical Journal of Chinese Universities, 2021, 42(10): 3054-3061.

[61] WANG S, PENG T, LI S, et al. Natural interface-mediated self-assembly of graphene-isolated-nanocrystals for plasmonic arrays construction and personalized information acquisition [J]. Nano Research, 2022, 15(10): 9327-9333.

[62] MIRANDA O R, AHMADI T S. Effects of intensity and energy of CW UV light on the growth of gold nanorods [J]. J Phys Chem B, 2005, 109(33): 15724-15734.

[63] XU W, LING X, XIAO J, et al. Surface enhanced Raman spectroscopy on a flat graphene surface [J]. Proc Natl Acad Sci U S A, 2012, 109(24): 9281-9286.

[64] YAMAKOSHI H, DODO K, PALONPON A, et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells [J]. J Am Chem Soc, 2012, 134(51): 20681-20689.

[65] ZHANG Y, QIAN J, WANG D, et al. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy [J]. Angew Chem Int Ed Engl, 2013, 52(4): 1148-1151.

[66] NIE X K, XU Y T, SONG Z L, et al. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting [J]. Nanoscale, 2014, 6(21): 13097-13103.()

尹志威, 温贻静, 石蕊, 夏昕, 王昚, 曹晓旭, 程玉琦, 曾佳玉, 李圣凯, 陈卓. 金属烯碳纳米囊在SERS中的应用研究进展[J]. 光散射学报, 2023, 35(3): 206. YIN Zhiwei, WEN Yijing, SHI Rui, XIA Xin, WANG Shen, CAO Xiaoxu, CHENG Yuqi, ZENG Jiayu, LI Shengkai, CHEN Zhuo. Advances in application of metalgraphitic nanocapsules in SERS[J]. The Journal of Light Scattering, 2023, 35(3): 206.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!