硅酸盐学报, 2022, 50 (3): 556, 网络出版: 2022-11-11   

基于1-3型压电单晶复合材料的高频宽带发射换能器

A High-frequency Wideband Transmitting Transducer Based on 1-3 Piezoelectric Single Crystal Composite
作者单位
1 杭州应用声学研究所, 声纳技术重点实验室, 杭州 310023
2 西安交通大学, 电子陶瓷与器件教育部重点实验室, 西安 710054
摘要
1-3型压电单晶复合材料结合弛豫铁电单晶与复合材料的优势, 具有压电常数高、机电耦合系数极大、声阻抗低等特点, 是理想的高频发射换能器压电元件。基于1-3型压电单晶复合材料设计并研制了高频宽带发射换能器, 根据理论计算分析了压电单晶复合材料的性能特点, 利用有限元建模仿真优化了换能器结构, 研制的1-3型压电单晶复合材料发射换能器在250~410 kHz范围内发送电压起伏不超过3 dB, 工作带宽达到160 kHz, 最大发送电压响应达178.4 dB, 性能大大优于同尺寸结构的1-3型压电陶瓷复合材料高频换能器。运用1-3型压电单晶复合材料制作高频发射换能器可有效拓宽工作频带, 提高水下声发射能力。
Abstract
1-3 piezoelectric single crystal composites with relaxor ferroelectric single crystals and composites as ideal piezoelectric elements in high-frequency transmitting transducers possess the superior characteristics including high piezoelectric constants, ultrahigh electromechanical coupling factors, and low acoustic impedance. A high-frequency wideband transmitting transducer based on 1-3 piezoelectric single crystal composite was designed and manufactured. The properties of piezoelectric single crystal composites were analyzed theoretically, and the transducer structure was optimized via simulation by finite element method. The 1-3 piezoelectric single crystal composite transducer produced has a bandwidth of 160 kHz, while the ripple of the transmitting voltage response does not exceed 3 dB in the frequency range from 250 kHz to 410 kHz. The maximum transmitting voltage response is 178.4 dB. The underwater transmitting performances of the single crystal composite transducer are superior to those of the ceramic composite transducer with the same structure and size. Fabricating high-frequency transmitting transducers using 1-3 piezoelectric single crystal composites can broaden the operating bandwith effectively, and improve the ability of acoustic emission underwater.
参考文献

[1] NEWNHAM R E, SKINNER D P, CROSS L E. Connectivity and piezoelectric-pyroelectric composites[J]. Mater Res Bull, 1978, 13(5): 525-536.

[2] GURURAJA T R, SCHULZE W A, CROSS L E, et al. Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites[J]. IEEE Trans Son Ultrason, 1985, 32(4): 481-498.

[3] 王冬梅, 吴孟强, 张树人. 超声和水声用压电复合材料的研究进 展[J]. 材料导报, 2009, 23(12): 56-60.

[4] SHUNG K K, CANNATA J M, ZHOU Q F. Piezoelectric materials for high frequency medical imaging applications: A review[J]. J Electroceram, 2007, 19(1): 141-147.

[5] HOWARTH T R, TING R Y. Electroacoustic evaluations of 1-3 piezocomposite sonopanel materials[J]. IEEE Trans Ultrason Ferroelec Freq Contr, 2000, 47(4): 886-894.

[6] ELMASH I C, KOYMEN H. A wideband and a wide-beamwidth acoustic transducer design for underwater acoustic communications[C] //OCEANS 2006 - Asia Pacific, Singapore, 2007: 1-5.

[7] 耿学仓, 李明轩. 检测超声换能器用1-3型压电环氧复合材料及换能器的研究[J]. 应用声学, 1991, 10(5): 10-14.

[8] 刘殿锋, 李明轩. 1-3型压电复合材料非均匀振动换能器的研究[J]. 应用声学, 1998, 17(1): 11-14, 42.

[9] 张凯, 蓝宇, 李琪. 1-3型压电复合材料宽带水声换能器研究[J]. 声学学报, 2011, 36(6): 631-637.

[10] 张凯, 唐义政, 仲林建, 等. 双匹配层高频宽带换能器研究[J]. 声学技术, 2017, 36(4): 86-88.

[11] 李莉, 王丽坤, 秦雷. 有限元法分析1-3型压电复合材料换能器[J]. 压电与声光, 2015, 37(3): 441-445.

[12] 杜海波, 秦雷, 仲超, 等. 基于1-1-3型压电复合材料水声换能器性能分析[J]. 西北工业大学学报, 2019, 37(2): 386-392.

[13] ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. Appl Phys Rev, 2012, 111(3): 031301.

[14] 许桂生, 罗豪甦, 齐振一, 等. 弛豫型铁电单晶Pb(Mg1/3Nb2/3)O3-PbTiO3电畴结构与铁电特性的关系[J]. 硅酸盐学报, 2000, 28(6): 560-565.

[15] LI X, LUO H. The growth and properties of relaxor-based ferroelectric single crystals [J]. J Am Ceram Soc, 2010, 93(10): 2915-2928.

[16] 陈春天, 张景云, 吴丰民, 等. 单斜相弛豫铁电单晶0.24PIN-0.43PMN-0.33PT的电光性能[J]. 硅酸盐学报, 2015, 43(11): 1592-1596.

[17] 李飞, 张树君, 徐卓. 压电效应——百岁铁电的守护者[J]. 物理学报, 2020, 69(21): 73-85.

[18] SMITH W A, AULD B A. Modeling 1-3 composite piezoelectrics: Thickness-mode oscillations[J]. IEEE Trans Ultrason Ferroelect Freq Contr, 1991, 38(1): 40-47.

[19] CHAN H L W, UNSWORTH J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[J]. IEEE Trans Ultrason Ferroelect Freq Contr, 1989, 36(4): 434-441.

[20] BAI W, WANG J R, XU X R, et al. FEM simulation of 1-3 piezoelectric composites based on relaxor ferroelectric single crystals and their properties as under water transducers[C]//The 14th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Shijiazhuang, 2019: 1-5.

[21] WANG T, ZHAO X D, DU H L, et al. Large-area piezoelectric single crystal composites via 3D-printing assisted dice-and-insert technology for hydrophone applications[J]. IEEE Trans Ultrason Ferroelect Freq Contr, 2021, 68(10): 3241-3248.

白玮, 王佳荣, 王婷, 杜红亮, 李飞, 徐卓, 许欣然, 郑震宇. 基于1-3型压电单晶复合材料的高频宽带发射换能器[J]. 硅酸盐学报, 2022, 50(3): 556. BAI Wei, WANG Jiarong, WANG Ting, DU Hongliang, LI Fei, XU Zhuo, XU Xinran, ZHENG Zhenyu. A High-frequency Wideband Transmitting Transducer Based on 1-3 Piezoelectric Single Crystal Composite[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 556.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!