激光技术, 2023, 47 (1): 32, 网络出版: 2023-04-12   

紫外光通信协作无人机防撞编队的控制方法

Control method for anti-collision formation of UAVs in cooperation with ultraviolet communication
作者单位
1 西安理工大学 自动化与信息工程学院, 西安 710048
2 陕西省智能协同网络军民共建重点实验室, 西安 710048
摘要
为了研究强电磁干扰环境下无人机防撞编队的避障控制效果, 采用无人机编队间紫外光通信模型, 对传统人工势场法进行改进, 给出了具体无人机编队机间和无人机与障碍物的势场函数, 实现无人机编队在飞行的同时可以进行局部避障。结果表明, 在相同条件下, 改进后的人工势场法比传统人工势场法的避障时间减少了7.38%, 避障总路径减少了5.8%, 将改进后的避障算法应用到编队中可实现无人机编队的机间避障与外部障碍物的规避, 且编队间能够保持固定队形飞行至目标点。这一结果对强电磁干扰环境下无人机编队避障的研究有一定的应用价值。
Abstract
In order to study the obstacle avoidance control effect of unmanned aerial vehicle (UAV) anti-collision formation in the environment of strong electromagnetic interference, the ultraviolet light communication model between UAV formations was adopted, and the traditional artificial potential field method was improved. The potential field function of the UAV and the obstacle was established, with which the local obstacle avoidance while the UAV formation was flying was realized. The results show that with the improved artificial potential field method, the obstacle avoidance time reduces by 7.38% and the total obstacle avoidance path reduces by 5.8% compared with the traditional artificial potential field method under the same conditions. The improved obstacle avoidance algorithm is applied to the formation. It can realize the obstacle avoidance between the drones and the avoidance of external obstacles, the formation can maintain a fixed formation to fly to the target point. This result has certain application value for the research of UAV formation obstacle avoidance in strong electromagnetic interference environment.
参考文献

[1] ZHANG S, ZHANG H, DI B, et al. Cellular UAV-to-X communications: Design and optimization for multi-UAV networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1346-1359.

[2] CIRILLO F, GMEZ D, DIEZ L, et al. Smart city IoT services creation through large scale collaboration[J]. IEEE Internet of Things Journal, 2020, 7(6): 5267-5275.

[3] ALLADI T, BANSAL G, CHAMOLA V, et al. Secauthuav: A novel authentication scheme for uav-ground station and UAV-UAV communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15068-15077.

[4] WEN J, ZHAO G, HUANG S, et al. UAV three-dimensional formation keeping controller design[C]//2019 Chinese Automation Congress (CAC).New York,USA: IEEE, 2019: 4603-4608.

[5] XU B, ZHANG D L. Tight formation flight control of UAVS based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41(8): 313-324(in Chinese).

[6] ZONG Q, WANG D D, SHAO Sh K, et al. Research status and development of multi UAV coordinated formation flight control [J]. Journal of Harbin Institute of Technology, 2017, 49(3): 1-14(in Chinese).

[7] TIAN Y, ZHU X, MENG D, et al. An overall configuration planning method of continuum hyper-redundant manipulators based on improved artificial potential field method[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4867-4874.

[8] BATISTA J, SOUZA D, SILVA J, et al. Trajectory planning using artificial potential fields with metaheuristics[J]. IEEE Latin America Transactions, 2020, 18(5): 914-922.

[9] YUAN J, ZHANG S, SUN Q, et al. Laser-based intersection-aware human following with a mobile robot in indoor environments[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 51(1): 354-369.

[10] LIU Y, HUANG P, ZHANG F, et al. Distributed formation control using artificial potentials and neural network for constrained multiagent systems[J]. IEEE Transactions on Control Systems Technology, 2018, 28(2): 697-704.

[11] ZHANG X, DUAN H. Altitude consensus based 3D flocking control for fixed-wing unmanned aerial vehicle swarm trajectory tracking[J]. Proceedings of the Institution of Mechanical Engineers, 2016, 230(14): 2628-2638.

[12] LINDQVIST B, MANSOURI S S, AGHA-MOHAMMADI A, et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6001-6008.

[13] PARK J, CHO N, LEE S. Reactive collision avoidance algorithm for UAV using bounding tube against multiple moving obstacles[J]. IEEE Access, 2020, 8: 218131-218144.

[14] SUO W K, HU W G,BAN L M, et al. Research on flight control of quadrotor UAV based on visual image[J]. Laser Technology, 2020, 44(4): 451-458(in Chinese).

[15] ZHAO T F, XIE Y, ZHANG Y. Connectivity properties for UAVs networks in wireless ultraviolet communication[J]. Photonic Network Communications, 2018, 35(3):316-324.

[16] CHEN W, FAN M K, LI Z H, et al. Design of network robustness for drone swarm system[J]. Systems Engineering and Electronics, 2019, 41(11): 2633-2640(in Chinese).

[17] LIN Y, WANG M, ZHOU X, et al. Dynamic spectrum interaction of UAV flight formation communication with priority: A deep reinforcement learning approach[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 892-903.

[18] ZHU X, YAN M D, ZHANG Ch L, et al. UAV formation collision avoidance control method based on improved artificial potential field[J]. Journal of Harbin Engineering University, 2017, 38(6): 961-968(in Chinese).

[19] WANG J, XIN M. Integrated optimal formation control of multiple unmanned aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1731-1744.

赵太飞, 张港, 容开新, 郑博睿. 紫外光通信协作无人机防撞编队的控制方法[J]. 激光技术, 2023, 47(1): 32. ZHAO Taifei, ZHANG Gang, RONG Kaixin, ZHEN Borui. Control method for anti-collision formation of UAVs in cooperation with ultraviolet communication[J]. Laser Technology, 2023, 47(1): 32.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!