红外与激光工程, 2017, 46 (10): 1030005, 网络出版: 2017-11-27   

基于速度结构函数的多普勒激光雷达低空湍流预警算法

Doppler lidar alerting algorithm of low-level turbulence based on velocity structure function
作者单位
1 中国民航大学 天津市智能信号与图像处理重点实验室, 天津 300300
2 民航气象技术研究所, 天津 300300
3 香港天文台, 香港 999077
摘要
为提高激光雷达对小尺度低空湍流的预警率, 提出了一种将下滑道扫描与横向速度结构函数相结合的预警算法。首先, 把下滑道扫描方式下得到的扫描扇区分成多个重叠的子扇区, 采用空间波动法计算每个子扇区的横向结构函数。其次, 将结构函数与Von Karman模型预测的结构函数拟合得到涡流耗散率, 并以国际民航组织规定的湍流阈值来判断湍流强度。使用香港天文台安装在香港国际机场实的激光雷达采集数据进行了实验验证, 结果表明新方法能够检测出纵向速度结构函数未能检测出的小尺度湍流。该方法是有效的, 对于提高湍流的预警率有重要意义。
Abstract
To raise the alarm rate of small scale and low-level turbulence detected by lidar, an alerting algorithm based on the combination of glide-path scanning and transverse velocity structure function was presented in this paper. Firstly, the scanning sector of the glide-path was divided into several overlapping subsectors, and the transverse structure function of each subsector was calculated by using the spatial fluctuation method. Secondly, the structure function was fitted with that predicted by the theoreitical Von Karman model to give eddy dissipation rate, and the results on provisions of the International Civil Aviation Organization′s turbulence threshold was compared to come to the conclusion. The performance of the proposed method was verified through the lidar collecting data of Hong Kong International Airport installed by Hong Kong Observatory. The results show that the proposed algorithm detects the small scale turbulence which longitudinal velocity structure function fails to detect. The new proposed method is effective, it is significant to raise the alarm rate.
参考文献

[1] International Civil Aviation Organization(ICAO). Meteorological service for International Air Navigation: Annex 3 to the Convention on International Civil Aviation[M]. 16th ed. Motreal, Canada: ICAO, 2007: 187.

[2] 蒋立辉, 高志光, 熊兴隆, 等. 基于激光雷达图像处理的低空风切变类型识别研究[J]. 红外与激光工程, 2012, 41(12): 3410-3415.

    Jiang Lihui, Gao Zhiguang, Xiong Xinglong, et al. Identification of the type of low-level shear wind based on lidar image processing[J]. Infrared and Laser Engineering, 2012, 41(12): 3410-3415. (in Chinese)

[3] Wong C C, Chan P W, Akaeda K. Calculation of turbulence intensity based on spectrum width data of a Doppler LIDAR[C]//Fourth Symposium on Lidar Atmospheric Applications, 2009.

[4] Chan P W, Hon K K, Shin D K. Combined use of headwind ramps and gradients based on LIDAR data in the alerting of low-level windshear/turbulence[J]. Meteorologische Zeitschrift, 2011, 20(6): 661-670.

[5] Chan P W, Li C M. Comparison of turbulence intensity computed from LIDAR and aircraft data[C]//24th International Laser Radar Conference, 2008.

[6] Chan P W, Lee Y F. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University-Science A, 2013, 14(7): 469-481.

[7] 韩燕, 孙东松, 翁宁泉, 等. 60 km车载瑞利测风激光雷达研制[J]. 红外与激光工程, 2015, 44(5): 1414-1419.

    Han Yan, Sun Dongsong, Weng Ningquan, et al. Development of 60 km mobile Rayleigh wind lidar[J]. Infrared and Laser Engineering, 2015, 44(5): 1414-1419. (in Chinese)

[8] 杜丽芳, 杨国韬, 程学武, 等. 基于多普勒测风激光雷达的锁频系统与激光测速系统的设计与实现[J]. 红外与激光工程, 2015, 44(9): 2562-2568.

    Du Lifang, Yang Guotao, Cheng Xuewu, et al. Design and realization of frequency locking system and laser velocity measuring system based on Doppler wind lidar[J]. Infrared and Laser Engineering, 2015, 44(9): 2562-2568.(in Chinese)

[9] 蒋立辉, 闫妍, 熊兴隆, 等. 基于斜坡检测的多普勒激光雷达低空风切变预警算法[J]. 红外与激光工程, 2016, 45(1): 0106001.

    Jiang Lihui, Yan Yan, Xiong Xinglong, et al. Doppler lidar alerting algorithm of low-level wind shear based on ramps detection[J]. Infrared and Laser Engineering, 2016, 45(1):0106001. (in Chinese)

[10] Chan P W, Shun C M, Wu K C. Operational LIDAR-based system for automatic windshear alerting at the Hong Kong International Airport [C]//12th Conference on Aviation, Range, and Aerospace Meteorology, 2006.

[11] 张士杰, 李俊山, 杨亚威, 等. 脉动流场光学传输效应仿真[J]. 红外与激光工程, 2014, 43(8): 2576-2581.

    Zhang Shijie, Li Junshan, Yang Yawei, et al. Simulation of aero-optic effects induced by fluctuation flow-field[J]. Infrared and Laser Engineering, 2014, 43(8): 2576-2581.(in Chinese)

[12] Frehlich Rod. Estimation of velocity error for Doppler lidar measurements[J]. Atmos Journal of Atmospheric and Oceanic Technology, 2001, 18(10): 1628-1639.

[13] Hill R J. Corrections to Taylor′s frozen turbulence approximation[J]. Atmospheric Research, 1996, 40(s2-4): 153-175.

[14] Frehlich Rod, Comman Larry. Estimating spatial velocity statistics with coherent Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19: 355-366.

[15] Davies F, Collier C G. Doppler lidar measurements of turbulent structure function over an urban area[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(5): 753-761.

熊兴隆, 韩永安, 蒋立辉, 陈柏纬, 陈星. 基于速度结构函数的多普勒激光雷达低空湍流预警算法[J]. 红外与激光工程, 2017, 46(10): 1030005. Xiong Xinglong, Han Yong′an, Jiang Lihui, Chen Bowei, Chen Xing. Doppler lidar alerting algorithm of low-level turbulence based on velocity structure function[J]. Infrared and Laser Engineering, 2017, 46(10): 1030005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!