中国激光, 2004, 31 (7): 870, 网络出版: 2006-06-12   

半导体基片在10.6 μm激光局域加热时的温度上升

Temperature Rise on a Semiconductor Substrate Locally Heated by 10.6 μm Laser Beam
作者单位
电子科技大学光电信息学院, 四川 成都 610054
摘要
在激光诱导扩散等激光微细加工技术中,需要用聚焦激光束照射基片表面,以形成局部高温区。为使局部高温区的温度分布满足实验要求,对10.6 μm聚焦连续波CO2激光束照射下半导体基片的温度上升进行了数值计算。计算中考虑了基片材料对10.6 μm激光的吸收系数随温度的变化。计算得到了温度上升与基片预热温度、入射激光束功率及曝光面积等参数的关系。结果表明,基片初始温度为室温及激光焦斑直径小于100 μm时,激光照射形成稳定高温区的最高温度不超过600 K。增加基片初始温度,可以在建立满足要求的温度上升的同时,减小基片上高温区分布的面积。在同一初始温度下,在基片高温区分布的面积符合实验要求的前提下,应尽量使用较大的光斑尺寸和激光功率,从而使基片表面热斑的温度分布更易控制。
Abstract
In laser assisted microprocesing, such as laser induced diffusion, the substrate is irradiated by a focused laser beam. And a high temperature region is formed on the substrate surface. To acquire the desired temperature distribution, the temperature rise in a semiconductor substrate induced by 10.6 μm focused continuous wave (CW) CO2 laser beam has been investigated numerically. The temperature-dependent absorption coefficients of the substrate material are incorporated in the calculation model. The relations between the temperature rise and parameters such as the preheating temperature, the power of the laser beam and the beam width have been obtained. It is shown that when the substrate is in room temperature before the irradiation and the diameter of the focused laser beam is smaller than 100 μm, the highest stable temperature on the substrate can not exceed 600 K. It is also shown that increasing the preheating temperature can reduce the size of high temperature region, when the induced temperature rise is kept to meet the requirement. Under the condition that the temperature distribution meets the experimental requirement, the laser spot size and the power of the incident laser beam should be adopted as large as possible in order to make the control of the temperature distribution easier.
参考文献

[1] Ye Yutang. Laser Assisted Microprocessing [M]. First Edition. Chengdu: Press of University of Electronic Science and Technology, 1995
叶玉堂. 激光微细加工[M]. 第一版. 成都:电子科技大学出版社, 1995

[2] . . Remote sensing of the temperature of the exposed region in laser assisted diffusion[J]. Journal of Applied Sciences, 1997, 15(4): 413-417.

[3] . Arnold, P. B. Kargl, D. Buerle. Laser direct writing and instabilities: a one-dimensional approach[J]. Appl. Surface Science, 1995, 86: 457-465.

[4] . Loza, D. Kouznetsov, R. Ortega. Temperature distribution in a uniform medium heated by linear absorption of a Gaussian light beam[J]. Appl. Opt., 1994, 33(18): 3831-3836.

[5] . K. Loze, C. D. Wright. Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light[J]. Appl. Opt., 1997, 36(2): 494-507.

[6] Shen Zhonghua, Lu Jian, Ni Xiaowu. An analytical solution to the problem of laser-induced heating and melting of semiconductors[J]. Chinese J. Lasers, 1998, A25(7):632~635
沈中华,陆建,倪晓武. 强激光作用下半导体材料的加热与熔融的解析计算[J]. 中国激光, 1998, A25(7):632~635

[7] Tian Hongtao, Chen Chao. Analytical calculation of temperature distribution in the process of doping of Zn into InP induced by pulsed laser[J]. Chinese J. Lasers, 2003, 30(8):755~758
田洪涛,陈朝. 脉冲激光诱导Zn/InP掺杂过程中温度分布的解析计算[J]. 中国激光, 2003, 30(8):755~758

[8] . A solid-phase epitaxy model for CW CO2-laser annealing of ion-implanted silicon[J]. Chinese J. Semiconductor, 1983, 4(1): 56-63.

[9] . Lax, Temperature rise induced by a laser beam[J]. J. Appl. Phys., 1977, 48(9): 3919-3924.

[10] . R. T. Siregar, W. Lüthy, K. Affolter. Dynamics of CO2 laser heating in the processing of silicon[J]. Appl. Phys. Lett., 1980, 36(10): 787-788.

吴云峰, 叶玉堂, 吴泽明, 杨先明, 秦宇伟. 半导体基片在10.6 μm激光局域加热时的温度上升[J]. 中国激光, 2004, 31(7): 870. 吴云峰, 叶玉堂, 吴泽明, 杨先明, 秦宇伟. Temperature Rise on a Semiconductor Substrate Locally Heated by 10.6 μm Laser Beam[J]. Chinese Journal of Lasers, 2004, 31(7): 870.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!