硅酸盐学报, 2023, 51 (1): 73, 网络出版: 2023-03-10   

S型异质结光催化材料研究进展

Research Progress on S-Scheme Heterojunction Photocatalyst
作者单位
1 武汉理工大学, 材料复合新技术国家重点实验室, 武汉 430070
2 中国地质大学(武汉), 材料与化学学院太阳燃料实验室, 武汉 430074
摘要
光催化反应可将太阳能转化为可储存的化学能源, 被认为是缓解能源危机和解决环境问题的有效途径之一。然而, 由于光生载流子低的转移和分离效率, 实际的光化学转换效率提升受到了限制。新兴的S型异质结光催化剂由于其在空间上实现了光生载流子的有效转移分离并展现出强的氧化还原能力, 在太阳燃料制备和环境治理领域受到了广泛关注和研究。本文综述了S型异质结光催化剂的发展历程和设计原理、光生载流子转移机制以及在能源和环境等领域的应用。最后, 提出了S型异质结光催化剂的发展前景和面临的挑战。
Abstract
Photocatalytic reactions can convert solar energy into storable chemical energy, thus providing a feasible strategy for solving energy crisis and environmental problems. However, the photochemical conversion efficiency is restricted due to the low transfer and separation efficiency of photogenerated carriers. The emerging S-scheme heterojunction photocatalysts have attracted recent attention in the fields of solar fuel conversion and environmental purification for the spatially efficient separation of photogenerated carriers and strong redox ability. This review represented recent development on the design principles, charge transfer mechanism and applications of S-scheme heterojunction photocatalysts. In addition, their prospects and challenges were also discussed.
参考文献

[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[2] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Adv Mater, 2021, 33(9): 2003521.

[3] ZHAO Z L, BIAN J, ZHAO L, et al. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation[J]. Chin J Catal, 2022, 43(5): 1331-1340.

[4] 郑会奇, 陈晋, 赵杨, 等. 溶剂热法原位制备TiO2/Ti3C2Tx复合材料及其光催化性能[J]. 硅酸盐学报, 2020, 48(5): 723-729.

[5] YANG X G, WANG D W. Photocatalysis: From fundamental principles to materials and applications[J]. ACS Appl Energy Mater, 2018, 1(12): 6657-6693.

[6] DI T M, XU Q L, HO W K, et al. Review on metal sulphide-based Z-scheme photocatalysts[J]. Chem Cat Chem, 2019, 11(5): 1394-1411.

[7] SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chem Rev, 2022, DOI: 10.1021/acs.chemrev.1c00473.

[8] LI J M, WU C C, LI J, et al. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chin J Catal, 2022, 43(2): 339-349.

[9] HE F, ZHU B C, CHENG B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Appl Catal B: Environ, 2020, 272: 119006.

[10] 姜建辉, 邓臣强, 曹钰, 等, Y和Si共掺杂纳米TiO2的制备及光催化性能[J]. 硅酸盐学报, 2019, 47(7): 942-950.

[11] 慕楠, 刘艳改, 惠壮, 等. 银纳米线/二氧化钛核壳结构的制备及可见光光催化性能[J]. 硅酸盐学报, 2020, 48(9): 1460-1467.

[12] MATOBA K, MATSUDA Y, TAKAHASHI M, et al. Fabrication of Pt/In2S3/CuInS2 thin film as stable photoelectrode for water splitting under solar light irradiation[J]. Catal Today, 2021, 375: 87-93.

[13] XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.

[14] ENESCA A, ANDRONIC L. Photocatalytic activity of S-scheme heterostructure for hydrogen production and organic pollutant removal: A mini-review[J]. Nanomaterials, 2021, 11(4): 871.

[15] HASIJA V, KUMAR A, SUDHAIK A, et al. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review[J]. Environ Chem Lett, 2021, 19(4): 2941-2966.

[16] BARD A J. Phtotelectrochemistry and heterogeneous photocatalysis at semiconductors[J]. J Photochem, 1979, 10(1): 59-75.

[17] SAYAMA K, MUKASA K, ABE R, et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3?/I? shuttle redox mediator under visible light irradiation[J]. Chem Commun, 2001, (23): 2416-2417.

[18] WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction[J]. Chin J Catal, 2021, 42(5): 667-669.

[19] ABE R, SHINMEI K, KOUMURA N, et al. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator[J]. J Am Chem Soc, 2013, 135(45): 16872-16884.

[20] SASAKI Y, KATO H, KUDO A. Co(bpy)(3) (3+/2+) and Co(phen)(3) (3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system[J]. J Am Chem Soc, 2013, 135(14): 5441-5449.

[21] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nat Mater, 2006, 5(10): 782-786.

[22] WANG X W, LIU G, CHEN Z G, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chem Commun, 2009, (23): 3452-3454.

[23] YU W L, ZHANG S, CHEN J X, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution[J]. J Mater Chem A, 2018, 6(32): 15668-15674.

[24] GRATZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344.

[25] FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl Catal B: Environ, 2019, 243: 556-565.

[26] MA X H, LIU Y N, WANG Y P, et al. Amorphous CoSx growth on CaTiO3 nanocubes formed S-scheme heterojunction for photocatalytic hydrogen production[J]. Energy Fuels, 2021, 35(7): 6231-6239.

[27] JIANG G P, ZHENG C Y, YAN T, et al. Cd0.8Mn0.2S/MoO3 composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution[J]. Dalton Trans, 2021, 50(15): 5360-5369.

[28] ZHU B C, TAN H Y, FAN J J, et al. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping[J]. J Materiomics, 2021, 7(5): 988-997.

[29] FEI X G, TAN H Y, CHENG B, et al. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations[J]. Acta Phys-Chim Sin, 2021, 37(6): 2010027.

[30] XU Q L, WAGEH S, AL-GHAMDI A A, et al. Design principle of S-scheme heterojunction photocatalyst[J]. J Mater Sci Technol, 2022, 124: 171-173.

[31] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Adv Mater, 2022, 34(11): 2107668.

[32] DENG H Z, FEI X G, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chem Eng J, 2021, 409: 127377.

[33] WANG Z L, CHENG B, ZHANG L Y, et al. BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction[J]. Sol RRL, 2022, 6(1): 2100587.

[34] LI X B, LIU J Y, HUANG J T, et al. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance[J]. Acta Phys-Chim Sin, 2021, 37(6): 2010030.

[35] BAI J X, SHEN R C, JIANG Z M, et al. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based ohmic junctions for effective photocatalytic H2 generation[J]. Chin J Catal, 2022, 43(2): 359-369.

[36] LIU S C, WANG K, YANG M X, et al. Rationally designed Mn0.2Cd0.8S@CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production[J]. Acta Phys-Chim Sin, 2022, 38(7): 2109023.

[37] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chin J Catal, 2020, 41(1): 9-20.

[38] WAGEH S, AL-GHAMDI A A, AL-HARTOMY O A, et al. CdS/polymer S-scheme H2-production photocatalyst and its in-situ irradiated electron transfer mechanism[J]. Chin J Catal, 2022, 43(3): 586-588.

[39] HUANG Y, MEI F F, ZHANG J F, et al. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution[J]. Acta Phys-Chim Sin, 2022, 38(7): 2108028.

[40] ZHANG B, SHI H X, YAN Y J, et al. A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity[J]. Colloids Surf A, 2021, 608: 125598.

[41] CHENG C, HE B W, FAN J J, et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism[J]. Adv Mater, 2021, 33(22): 2100317.

[42] WANG X Y, WANG Y S, GAO M C, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO[J]. Appl Catal B: Environ, 2020, 270: 118876.

[43] HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew Chem Int Ed, 2013, 52(29): 7372-7408.

[44] ZHANG Z Z, CAO Y X, ZHANG F H, et al. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer[J]. Chem Eng J, 2022, 428: 131218.

[45] WANG L B, FEI X G, ZHANG L Y, et al. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst[J]. J Mater Sci Technol, 2022, 112: 1-10.

[46] SAYED M, ZHU B C, KUANG P Y, et al. EPR investigation on electron transfer of 2D/3D g-C3N4/ZnO S-scheme heterojunction for enhanced CO2 photoreduction[J]. Adv Sustain Syst, 2022, 6(1): 2100264.

[47] XU F Y, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat Commun, 2020, 11(1): 4613.

[48] WANG L C, CAO S, GUO K, et al. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chin J Catal, 2019, 40(3): 470-475.

[49] YANG Y, ZENG G M, HUANG D L, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production[J]. Appl Catal B: Environ, 2020, 272: 118970.

[50] HAN G W, XU F Y, CHENG B, et al. Enhanced photocatalytic H2O2 production over inverse opal ZnO@polydopamine S-scheme heterojunctions[J]. Acta Phys-Chim Sin, 2022, 38(7): 2112037.

[51] LIU B W, BIE C B, ZHANG Y, et al. Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production[J]. Langmuir, 2021, 37(48): 14114-14124.

[52] JIANG Z C, CHENG B, ZHANG Y, et al. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production[J]. J Mater Sci Technol, 2022, 124: 193-201.

[53] RUEDA-MARQUEZ J J, LEVCHUK I, IBAEZ P F, et al. A critical review on application of photocatalysis for toxicity reduction of real wastewaters[J]. J Cleaner Prod, 2020, 258: 120694.

[54] KONSTANTINOU I K, ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations - A review[J]. Appl Catal B: Environ, 2004, 49(1): 1-14.

[55] CHEN G, YU Y, LIANG L, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review[J]. J Hazard Mater, 2020, 408: 124461.

[56] DENG Y, ZHAO R Z. Advanced oxidation processes (AOPs) in wastewater treatment[J]. Curr Pollut Rep, 2015, 1(3): 167-176.

[57] ZHOU L, LI Y F, ZHANG Y K, et al. A 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation[J]. Acta Phys-Chim Sin, 2022, 38(7): 2112027.

[58] HE R G, OU S J, LIU Y X, et al. In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity[J]. Chin J Catal, 2022, 43(2): 370-378.

[59] WANG J, WANG G H, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chin J Catal, 2021, 42(1): 56-68.

[60] XIA P F, CAO S W, ZHU B C, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew Chem Int Ed, 2020, 59(13): 5218-5225.

[61] CORRIGAN N, SHANMUGAM S, XU J T, et al. Photocatalysis in organic and polymer synthesis[J]. Chem Soc Rev, 2016, 45(22): 6165-6212.

[62] BORODKIN G I, SHUBIN V G. Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds[J]. Russ Chem Rev, 2019, 88(2): 160-203.

[63] CHENG H J, XU W T. Recent advances in modified TiO2 for photo-induced organic synthesis[J]. Org Biomol Chem, 2019, 17(47): 9977-9989.

[64] XU F Y, MENG K, CAO S, et al. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source[J]. ACS Catal, 2022, 12(1): 164-172.

江梓聪, 张留洋, 余家国. S型异质结光催化材料研究进展[J]. 硅酸盐学报, 2023, 51(1): 73. JIANG Zicong, ZHANG Liuyang, YU Jiaguo. Research Progress on S-Scheme Heterojunction Photocatalyst[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 73.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!