无机材料学报, 2022, 37 (12): 1289, 网络出版: 2023-01-12  

闪烧合成高熵氧化物陶瓷(MgCoNiCuZn)O的性能 下载: 706次

High Entropy Oxide Ceramics (MgCoNiCuZn)O: Flash Sintering Synthesis and Properties
作者单位
摘要
闪烧技术是一种温度场与电场耦合的烧结技术, 具有低温快速传质的特性, 在高熵陶瓷的合成上具有显著的优势。本研究通过闪烧法合成了相对致密的高熵氧化物陶瓷(MgCoNiCuZn)O, 并与传统烧结试样的性能进行了对比。在室温, 电场强度为50 V/cm, 电流密度为300 mA/mm2条件下闪烧, 物相转变的时间仅为10 s。闪烧试样最高相对密度为94%, 比传统烧结试样最高密度提高了22.8%。闪烧试样的最高硬度5.05 GPa, 比传统烧结试样高3.95 GPa。当频率<2 Hz时, 闪烧试样的介电常数比传统烧结试样高一个数量级。闪烧试样性能的提高, 一方面与临界电场加速传质, 提高材料致密度有关; 另一方面与临界电场引入额外的缺陷有关。
Abstract
Flash sintering is a sintering technology coupled with temperature field and electric field, with characteristics of rapid mass transfer at low temperature, showing significant advantages in the synthesis of high entropy ceramics. In this study, relatively dense high entropy oxide ceramic (MgCoNiCuZn)O was synthesized by flash sintering, which properties were compared with those of conventional sintered samples. Under flash sintering condition of room temperature, the electric field intensity of 50 V/cm and the current density of 300 mA/mm2, the time of phase transformation is only 10 s. The maximum relative density of flash sintered sample is 94%, which is 22.8% higher than that of conventional sintered sample. The maximum hardness of flash sintered sample is 5.05 GPa, which is 3.95 GPa higher than that of conventional sintered sample. When the frequency is lower than 2 Hz, the dielectric constant of flash sintering sample is one order of magnitude higher than that of conventional sintered sample. The property improvement of flash sintered samples is attributed to the acceleration of mass transfer by the critical electric field to increase the material density, and the extra defects introduced by the critical electric field.

高熵陶瓷是一种具有一个或多个Wyckoff位点的无机化合物的固溶体, 其中多个主元素的原子比相等或接近相等[1]。高熵氧化物陶瓷(MgCoNiCuZn)O (HEO)作为首个被发现的高熵陶瓷[2], 不仅为发现新材料提供了新思路, 而且其本身及其衍生物也具有很好的性能, 在能量储存[3-6]、热和环境保护[7-9]、催化[10-11]等方面有很好的应用前景。

块状高熵陶瓷HEO的合成方法主要有传统烧结[2]、放电等离子烧结[12]和闪烧[13]等。其中, 闪烧以其显著加速固相反应和诱导相变而备受关注[14]。本课题组[14]采用反应辅助闪烧成功地在室温下合成了HEO, 与传统烧结相比, 五元混合氧化物在几十秒内完全转变为单一的岩盐相。分析表明, 电场显著加快了相变速率, 验证了采用反应辅助闪烧技术合成熵稳定氧化物的可行性。随后, Yoon[15]和Kumar[16]等也得到了类似的结果。但是, 上述研究得到的高熵陶瓷相对密度较低, 难以研究其性能。为了探究闪烧合成HEO的性能, 本研究利用闪烧合成技术低温快速传质的特性, 合成了相对致密的高熵氧化物陶瓷(MgCoNiCuZn)O, 并与传统烧结试样的性能进行了对比。

1 实验方法

以NiO、CuO、ZnO、MgO、Co3O4五种纳米粉体为原料, 使用行星式球磨机将n(NiO) : n(CuO) : n(MgO) : n(ZnO) : n(Co3O4) = 3 : 3 : 3 : 3 : 1的纳米粉体在蒸馏水中混合24 h。得到的悬浮液在85 ℃的烘箱中烘干后置于研钵中研磨得到混合粉体。再将粉体在25 MPa的单轴压力以及290 MPa的冷等静压压力下压制成狗骨状生坯。在500 ℃空气中烧结2 h以去除黏结剂, 预处理坯体的密度在55%左右。使用直流电源(APS DCP1200-1, Adaptive Power System)在试样上施加电场, 当电流密度达到最大值后保持一段时间, 然后断开电源, 迅速取出样品, 让样品空冷。作为对比, 在管式炉(OTF-1200X, 合肥科晶)中以5 ℃/min的速率升温, 到达设定温度后保温2 h, 然后迅速取出得到传统烧结样品。闪烧和传统烧结的具体实验参数如表1所示。

表 1. 闪烧和传统烧结的实验参数

Table 1. Experimental parameters of flash sintering and conventional sintering

LabelE/(V·cm-1) J/(mA·mm-2) Tf/℃ tTe/℃
F15015030060 s990
F25020030060 s1060
F35025030060 s1100
F45030030060 s1130
C1--9902 h-
C2--10602 h-
C3--11002 h-
C4--11302 h-

查看所有表

使用X射线衍射仪(XRD, PANalytical Empyrean, Netherlands)分析样品标距段的晶体结构。利用阿基米德排水法测量样品的密度。采用黑体辐射(辐射因子0.98)估算得到闪烧第三阶段的平均温度。使用维氏硬度计测量样品标距段的硬度, 每个试样的测试次数为15次。采用德国Novocontrol公司生产的型号为Concept80的宽频介电阻抗谱仪测试样品的常温介电性能。

2 结果与讨论

图1(a)是不同电流密度下典型的闪烧曲线, 在临界电场的作用下, 电流密度与功率由缓慢增加变为激增, 当达到限定电流密度时, 电源转换为恒流模式。值得注意的是, 典型的闪烧曲线在第三阶段为较为平缓的一段曲线, 而当电流密度超过100 mA/mm2时, 在闪烧第三阶段还有一个功率波动的现象。结合图1(b), 当电流密度为100 mA/mm2时, 样品呈多相结构, 而当电流密度>100 mA/mm2时, 样品呈单相岩盐结构, 与之相对应的传统烧结试样C1-C4也均为单相盐岩结构(见图1(e))。由此推测, 形成单相的过程发生在闪烧的第三阶段。图1(c)是电流密度为300 mA/mm2, 不同保温时间的功率密度曲线, 结合图1(d)相应的XRD图谱, 可以看到在闪烧第三阶段未经历功率波动的试样(0 s)为多相结构, 而在闪烧第三阶段经历了功率波动的试样为单相试样, 由此表明, 闪烧第三阶段功率波动是由相变引起的。通过闪烧保温阶段样品的照片来看(见图1(f)), 样品的正极一端首先开始变亮, 随着时间延长, 由正极逐渐延伸到负极, 直至标距段完全变亮, 表明相变是从正极一端开始的。

图 1. 不同条件下的闪烧曲线、闪烧样品和传统烧结样品的XRD图谱以及闪烧样品保温阶段的照片

Fig. 1. Flash sintering curves, XRD patterns of samples and pictures of flash sintered sample in the stable stage

下载图片 查看所有图片

图2显示了闪烧和传统烧结试样的相对密度(绝对密度按6.137 g/cm3计算[17])。随着电流密度增大, 闪烧试样的密度呈现增大的趋势。闪烧试样的致密度一般与温度场效应以及电场引起的非热效应有关[18-21]。试样的温度受电流密度显著影响, 电流密度越大, 试样温度越高[22]。为了研究温度场对试样致密度的影响, 采用黑体辐射模型估算闪烧试样的温度, 并在相应温度下制备了传统烧结试样(见表1)。从图2可以看出, 传统烧结试样的致密度随着温度升高而升高, 这说明温度场对试样致密度的影响明显[18]。有研究者认为闪烧瞬间会使晶界处出现局部高温, 形成液相, 从而提高致密化速率[23]。除此之外, Zhang[24]和Ji[25]等几乎同时提出闪烧瞬间极高的加热速率是造成快速致密化的根本原因, 并通过快速升温烧结实验进行了对比验证。然而, 闪烧试样的密度远高于传统烧结试样的密度, 例如电流密度为300 mA/mm2的闪烧试样, 相对密度为94%, 比传统烧结的相对密度高22.8%, 这难以从单一的温度场效应来解释, 因此电场引起的非热效应可能对试样致密度也会产生重要影响。Ren等[26]认为临界电场下氧空位的产生和运动会在粉体颗粒间产生库仑力, 这有利于烧结前期的致密化过程, 同时致密化过程中伴随着金属阳离子的快速运动。Cologna等[27]提出Frenkel缺陷在电场作用下发生雪崩是造成快速致密化的原因。总之, 闪烧试样具有更高致密度是温度场和电场耦合的结果。

图 2. 在300 ℃保温60 s, 不同电流密度下闪烧试样的密度, 以及在对应温度下传统烧结试样的密度

Fig. 2. Densities of samples flash sintered at different current densities at 300 ℃ with holding time of 60 s, and of samples conventionally sintered at the corresponding temperatures

下载图片 查看所有图片

图3是闪烧试样和传统烧结试样典型的SEM照片。从试样的表面图片来看(见图3(a~d, f~i)), 传统烧结试样含有大量气孔, 密度较低, 而闪烧试样的气孔相对较少, 致密度较高, 并且随着电流密度增大, 孔洞的数量减少。此外, 从试样的断面图片来看(见图3(e, j)), 传统烧结试样(C2)中存在大量连通气孔, 与烧结中期的典型现象一致; 而闪烧试样(F2)中没有观察到连通气孔, 均为孤立封闭气孔, 与烧结后期的典型现象一致, 进一步证明闪烧试样具有更高的致密度。

图 3. 不同电流密度闪烧样品以及相应温度传统烧结样品微观结构对比

Fig. 3. Comparison of microstructures of flash sintered samples with different current densities and conventional sintered samples at corresponding temperatures

下载图片 查看所有图片

图4是闪烧试样与相应传统烧结试样的硬度。从图4(a)中看出, 闪烧试样的硬度随着电流密度增加而增大。当电流密度为300 mA/mm2时, 闪烧试样的硬度约为(5.05±0.19) GPa, 而传统烧结试样的硬度仅为(1.10±0.18) GPa, 试样的硬度提高了400%。陶瓷材料的硬度主要与晶粒尺寸和密度有关。当晶粒尺寸>0.2 μm时, 晶粒尺寸对硬度的影响可忽略不计[28]。进一步, 给出试样的硬度随气孔率的变化曲线, 见图4(b)。无论是闪烧试样还是传统烧结试样, 硬度都随气孔率的减小而增大, 且都在一条曲线上, 这说明试样硬度的提高主要归因于致密度的提高[29-30]。此外, 闪烧试样的硬度值偏差明显大于传统烧结试样, 这可能与直流闪烧试样的微观结构不均匀有关, 这种微观结构的不均匀性在其它闪烧体系中也有报道[31-33]

图 4. 闪烧试样和传统烧结试样的硬度(a)及其硬度随气孔率的变化曲线(b)

Fig. 4. Hardness (a) and plot of hardness as a function of porosity(b) of flash sintered and conventional sintered samples

下载图片 查看所有图片

图5是闪烧试样与传统烧结试样的介电常数的实部、虚部以及介电损耗的数据。闪烧试样低于2 Hz, 介电常数在103以上; 而传统烧结只有当频率为10-2 Hz时, 最大介电常数才为103。值得注意的是, 巨大的介电常数并非是所含有的二价阳离子氧化物的共同特征, 而是形成高熵氧化物的特征[4]。这可能是源于晶界或者晶粒表面的电荷累积所引起的Maxwell-Wagner极化效应[34]。在高频(大于104 Hz)下, 传统烧结试样与闪烧试样的介电常数相近, 而在低频(2 Hz)下, 闪烧试样的介电常数比传统烧结试样高一个数量级。图5(c)是不同频率下的介电损耗, 可以看到当闪烧电流密度较大时(如F3), 与相应传统烧结试样的介电损耗相比较大; 但当闪烧电流密度较小时(如F1, F2), 闪烧试样具有更大介电常数的同时, 可以保持与传统烧结试样相近的介电损耗。在低频(<103 Hz)下, 主要的介电机制为空间电荷极化, 极化程度越高, 介电常数越大[35]。空间电荷极化是指内部电荷在电场下移动的过程中被这些缺陷捕获, 造成电荷的局部聚集, 使电荷分布不均, 从而引起的极化。在外加电场作用下, 闪烧试样中可能引入大量的缺陷[20,26,36-37], 从而导致在低频下闪烧试样的极化程度比传统烧结的极化程度大, 这可能是低频下闪烧试样的介电常数比传统烧结试样高的原因。

图 5. 不同电流密度下闪烧试样以及相应温度下传统烧结试样的介电常数的实部(a)与虚部(b)以及介电损耗(c)

Fig. 5. Real (a) and imaginary (b) parts of the dielectric constants, and tangent loss of flash sintered samples at different current densities and conventional sintered samples at the corresponding temperatures (c)

下载图片 查看所有图片

3 结论

本工作通过闪烧法合成了相对致密的高熵氧化物陶瓷HEO, 并与传统烧结试样的性能进行了对比。在室温, 电场强度为50 V/cm, 电流密度为300 mA/mm2条件下闪烧, 物相转变的时间仅为10 s。闪烧试样最高相对密度为94%, 比传统烧结最高密度提高了22.8%, 这是温度场与电场耦合的结果。闪烧试样的最高硬度为5.05 GPa, 比传统烧结试样高3.95 GPa, 硬度提高归因于致密度增加。当频率<2 Hz时, 闪烧试样的介电常数比传统烧结高一个数量级, 这是由于电场作用下缺陷增多会导致在以空间电荷极化为主要机制的频率范围内闪烧试样的极化程度增大, 因此在低频范围内, 闪烧试样的介电常数远大于传统烧结试样。

参考文献

[1] XIANGH, XINGY, DAIF, et al.High-entropy ceramics: present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10:385-441. 10.1007/s40145-021-0477-yhttps://doi.org/10.1007/s40145-021-0477-y

[2] ROSTC M, SACHETE, BORMANT, et al.Entropy-stabilized oxides. Nature Communications, 2015, 6:8485. 10.1038/ncomms948526415623Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Maria, Jon-Paul N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. Curtarolo, Stefano Duke Univ, Dept Mech Engn & Mat Sci, Ctr Mat Genom, Durham, NC 27708 USA.

[3] WANGQ, SARKARA, LIZ, et al.High entropy oxides as anode material for Li-ion battery applications: a practical approach. Electrochemistry Communications, 2019, 100:121-125. 10.1016/j.elecom.2019.02.001https://linkinghub.elsevier.com/retrieve/pii/S1388248119300372

[4] BĖRARDAND, FRANGERS, DRAGOED, et al.Colossal dielectric constant in high entropy oxides. Physica Status Solidi (RRL)- Rapid Research Letters, 2016, 10:328-333. 10.1002/pssr.201600043https://onlinelibrary.wiley.com/doi/10.1002/pssr.201600043

[5] BĖRARDAND, FRANGERS, MEENAA K, et al.Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016, 4:9536-9541. 10.1039/C6TA03249Dhttp://xlink.rsc.org/?DOI=C6TA03249D

[6] QIUN, CHENH, YANGZ, et al.A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. Journal of Alloys and Compounds, 2019, 777:767-774. 10.1016/j.jallcom.2018.11.049https://linkinghub.elsevier.com/retrieve/pii/S0925838818341677

[7] CHENJ, LIUW, LIUJ, et al.Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5. The Journal of Physical Chemistry C, 2019, 123:17735-17744. 10.1021/acs.jpcc.9b04992https://pubs.acs.org/doi/10.1021/acs.jpcc.9b04992

[8] BRAUNJ L, ROSTC M, LIMM, et al.Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater., 2018, 30:e1805004.

[9] HONGW, CHENF, SHENQ, et al.Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. Journal of the American Ceramic Society, 2019, 102:2228-2237.

[10] CHENH, LINW, ZHANGZ, et al.Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Materials Letters, 2019, 1:83-88. 10.1021/acsmaterialslett.9b00064https://pubs.acs.org/doi/10.1021/acsmaterialslett.9b00064

[11] CHENH, FUJ, ZHANGP, et al.Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018, 6:11129-11133. 10.1039/C8TA01772Ghttp://xlink.rsc.org/?DOI=C8TA01772G

[12] DUPUYA D, WANGX, SCHOENUNGJ M.Entropic phase transformation in nanocrystalline high entropy oxides. Materials Research Letters, 2018, 7:60-67. 10.1080/21663831.2018.1554605https://www.tandfonline.com/doi/full/10.1080/21663831.2018.1554605

[13] LIUJ, SHAOG, LIUD, et al.Design and synthesis of chemically complex ceramics from the perspective of entropy. Materials Today Advances, 2020, 8:1-12.

[14] LIUD, PENGX, LIUJ, et al.Ultrafast synthesis of entropy- stabilized oxide at room temperature. Journal of the European Ceramic Society, 2020, 40:2504-2508. 10.1016/j.jeurceramsoc.2020.01.018https://linkinghub.elsevier.com/retrieve/pii/S0955221920300182

[15] YOONB, AVILAV, RAJR, et al.Reactive flash sintering of the entropy-stabilized oxide Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O. Scripta Materialia, 2020, 181:48-52. 10.1016/j.scriptamat.2020.02.006https://linkinghub.elsevier.com/retrieve/pii/S1359646220300622

[16] KUMARA, SHARMAG, AFTABA, et al.Flash assisted synthesis and densification of five component high entropy oxide (Mg, Co, Cu, Ni, Zn)O at 350 ℃ in 3 min.Journal of the European Ceramic Society, 2020, 40:3358-3362. 10.1016/j.jeurceramsoc.2020.02.036https://linkinghub.elsevier.com/retrieve/pii/S0955221920301291

[17] SARKARA, DJENADICR, USHARANIN J, et al.Nanocrystalline multicomponent entropy stabilised transition metal oxides. Journal of the European Ceramic Society, 2017, 37:747-754. 10.1016/j.jeurceramsoc.2016.09.018https://linkinghub.elsevier.com/retrieve/pii/S0955221916305155

[18] PARKJ, CHENI W.In situ thermometry measuring temperature flashes exceeding 1,700 ℃ in 8mol% Y2O3-stablized zirconia under constant-voltage heating. Journal of the American Ceramic Society, 2013, 96:697-700. 10.1111/jace.12176https://onlinelibrary.wiley.com/doi/10.1111/jace.12176

[19] CHAIMR.On the kinetics of liquid-assisted densification during flash sintering of ceramic nanoparticles. Scripta Materialia, 2019, 158:88-90. 10.1016/j.scriptamat.2018.08.029https://linkinghub.elsevier.com/retrieve/pii/S1359646218305050

[20] RENK, HUANGS, CAOY, et al.The densification behavior of flash sintered BaTiO3. Scripta Materialia, 2020, 186:362-365. 10.1016/j.scriptamat.2020.05.005https://linkinghub.elsevier.com/retrieve/pii/S1359646220302827

[21] JHAS K, CHARALAMBOUSH, WANGH, et al. In-situ observation of oxygen mobility and abnormal lattice expansion in ceria during flash sintering. Ceramics International, 2018, 44:15362-15369. 10.1016/j.ceramint.2018.05.186https://linkinghub.elsevier.com/retrieve/pii/S0272884218313312

[22] RAJR.Joule heating during flash-sintering. Journal of the European Ceramic Society, 2012, 32:2293-2301. 10.1016/j.jeurceramsoc.2012.02.030https://linkinghub.elsevier.com/retrieve/pii/S0955221912001045

[23] NARAYANJ.A new mechanism for field-assisted processing and flash sintering of materials. Scripta Materialia, 2013, 69:107-111. 10.1016/j.scriptamat.2013.02.020https://linkinghub.elsevier.com/retrieve/pii/S1359646213000894

[24] ZHANGY, NIEJ, CHANJ M, et al.Probing the densification mechanisms during flash sintering of ZnO.Acta Materialia, 2017, 125:465-475. 10.1016/j.actamat.2016.12.015https://linkinghub.elsevier.com/retrieve/pii/S135964541630951X

[25] JIW, PARKERB, FALCOS, et al.Ultra-fast firing: effect of heating rate on sintering of 3YSZ, with and without an electric field. Journal of the European Ceramic Society, 2017, 37:2547-2551. 10.1016/j.jeurceramsoc.2017.01.033https://linkinghub.elsevier.com/retrieve/pii/S0955221917300481

[26] RENK, WANGQ, LIANY, et al.Densification kinetics of flash sintered 3mol% Y2O3 stabilized zirconia. Journal of Alloys and Compounds, 2018, 747:1073-1077. 10.1016/j.jallcom.2018.02.308https://linkinghub.elsevier.com/retrieve/pii/S092583881830803X

[27] COLOGNAM, PRETTEA L G, RAJR.Flash-sintering of cubic yttria-stabilized zirconia at 750 ℃ for possible use in SOFC manufacturing. Journal of the American Ceramic Society, 2011, 94:316-319. 10.1111/j.1551-2916.2010.04267.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2010.04267.x

[28] PARKH S, RUDDR E, CAVALLOR M, et al.Grain-size- independent plastic flow at ultrahigh pressures and strain rates. Physical Review Letters, 2015, 114:065502. 10.1103/PhysRevLett.114.065502https://link.aps.org/doi/10.1103/PhysRevLett.114.065502

[29] LIJ, FANJ, YUANY, et al.Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic. Ceramics International, 2020, 46:13240-13243. 10.1016/j.ceramint.2020.02.100https://linkinghub.elsevier.com/retrieve/pii/S0272884220304223

[30] LIUD, ZHANGX, FANJ, et al.Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages. Ceramics International, 2021, 47:23682-23685. 10.1016/j.ceramint.2021.05.051https://linkinghub.elsevier.com/retrieve/pii/S027288422101436X

[31] RENK, XIAJ, WANGY.Grain growth kinetics of 3mol% yttria- stabilized zirconia during flash sintering. Journal of the European Ceramic Society, 2019, 39:1366-1373. 10.1016/j.jeurceramsoc.2018.11.032https://linkinghub.elsevier.com/retrieve/pii/S0955221918306988

[32] ZHAOR, HAND, LUS, et al.Position-sensitive electric property of flash-sintered 3Y-TZP ceramics based on DC bias assisted impedance analysis. Ceramics International, 2022, 48:2882-2885. 10.1016/j.ceramint.2021.09.265https://linkinghub.elsevier.com/retrieve/pii/S0272884221030716

[33] YAOS, LIUD, LIUJ, et al.Ultrafast preparation of Al2O3-ZrO2 multiphase ceramics with eutectic morphology via flash sintering. Ceramics International, 2021, 47:31555-31560. 10.1016/j.ceramint.2021.08.034https://linkinghub.elsevier.com/retrieve/pii/S0272884221024068

[34] HOMESC C, VOGTT, SHAPIROS M, et al.Optical response of high-dielectric-constant perovskite-related oxide. Science, 2001, 293:673-676. 11474105Optical conductivity measurements on the perovskite-related oxide CaCu3Ti4O12 provide a hint of the physics underlying the observed giant dielectric effect in this material. A low-frequency vibration displays anomalous behavior, implying that there is a redistribution of charge within the unit cell at low temperature. At infrared frequencies (terahertz), the value for the dielectric constant is approximately 80 at room temperature, which is far smaller than the value of approximately 10(5) obtained at lower radio frequencies (kilohertz). This discrepancy implies the presence of a strong absorption at very low frequencies due to dipole relaxation. At room temperature, the characteristic relaxation times are fast (less than or approximately 500 nanoseconds) but increase dramatically at low temperature, suggesting that the large change in dielectric constant may be due to a relaxor-like dynamical slowing down of dipolar fluctuations in nanosize domains.

[35] 许静.有机改性SiC晶须/PVDF复合薄膜的制备及介电性能研究. 西安: 西安建筑科技大学硕士学位论文, 2018.

[36] LIUD, WANGK, ZHAOK, et al.Creep behavior of zirconia ceramics under a strong DC field. Scripta Materialia, 2022, 214:114654. 10.1016/j.scriptamat.2022.114654https://linkinghub.elsevier.com/retrieve/pii/S1359646222001543

[37] MAB, ZHUY, WANGK, et al.Microstructure and dielectric property of flash sintered SiO2-coated BaTiO3 ceramics. Scripta Materialia, 2019, 170:1-5. 10.1016/j.scriptamat.2019.05.019https://linkinghub.elsevier.com/retrieve/pii/S1359646219302878

李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃. 闪烧合成高熵氧化物陶瓷(MgCoNiCuZn)O的性能[J]. 无机材料学报, 2022, 37(12): 1289. Wangguo LI, Dianguang LIU, Kewei WANG, Baisheng MA, Jinling LIU. High Entropy Oxide Ceramics (MgCoNiCuZn)O: Flash Sintering Synthesis and Properties[J]. Journal of Inorganic Materials, 2022, 37(12): 1289.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!