硅酸盐通报, 2022, 41 (6): 2167, 网络出版: 2022-07-24  

黏土矿物纳米材料在锂电池隔膜和固态电解质中的应用研究进展

Application of Clay Mineral Nanomaterials in Lithium Battery Separators and Solid-State Electrolytes
作者单位
1 中国科学院兰州化学物理研究所, 甘肃省黏土矿物应用研究重点实验室, 环境材料与生态化学发展中心, 兰州 730000
2 中国科学院大学, 材料科学与光电技术学院, 北京 100049
3 甘肃省水务投资有限责任公司, 兰州 730000
摘要
锂离子电池已被广泛应用于便携式电子设备、电动汽车和电网等领域, 深刻地影响着人们的日常生活。但是受限于其低的能量密度、安全性等问题, 需开发稳定、高效的电化学存储材料。黏土矿物因其独特的纳米结构、丰富的活性位点、高的比表面积、丰富的储量和低成本等优点, 在锂二次电池领域有着广阔的应用前景。本文首先介绍了黏土矿物纳米材料的分类、结构和化学组成等。然后, 综述了黏土矿物纳米材料在锂二次电池隔膜和固态电解质隔膜方面的应用研究进展。最后, 总结了黏土矿物在电化学储能领域的优势和不足, 并展望了其未来发展趋势。
Abstract
Lithium ion batteries have been widely used in portable electronic devices, electric vehicles and power grids, which have a profound impact on people’s daily life. It is necessary to develop stable and efficient electrochemical energy storage materials due to their low energy density and safety. Clay minerals have great application potential in the construction of lithium battery materials because of their unique nanostructures, rich active sites, high specific surface area, rich reserves and cost-effectiveness. In this paper, the classification, structure and chemical composition of clay mineral were introduced firstly. Then, the application research progress of clay mineral in the separator and solid-state electrolytes of battery was reviewed. Finally, the advantages and disadvantages of clay mineral in the energy-storage systems were discussed, and the future development trend was also prospected.
参考文献

[1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22.

[2] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities [J]. Nature Reviews Materials, 2016, 1: 16013.

[3] 查 成,张天宇,季雨辰,等.锂硫电池正极材料的研究进展[J].硅酸盐通报,2021,40(4):1352-1360.

[4] YANG Y F, WANG W K, LI L X, et al. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator[J]. Journal of Materials Chemistry A, 2020, 8(7): 3692-3700.

[5] ZENG Z H, DONG Y, YUAN S H, et al. Natural mineral compounds in energy-storage systems: development, challenges, prospects[J]. Energy Storage Materials, 2022, 45: 442-464.

[6] YANG C H, GAO R J, YANG H M. Application of layered nanoclay in electrochemical energy: current status and future[J]. EnergyChem, 2021, 3(5): 100062.

[7] 王春源,黄杜斌,宋波涛,等.硅藻土涂层改性锌负极及其在锌离子电池中的应用[J].硅酸盐通报,2020,39(6):1909-1915.

[8] LV P Z, LIU C Z, RAO Z H. Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707-726.

[9] LAN Y, LIU Y Y, LI J W, et al. Natural clay-based materials for energy storage and conversion applications[J]. Advanced Science, 2021, 8(11): 2004036.

[10] UMMARTYOTIN S, BUNNAK N, MANUSPIYA H. A comprehensive review on modified clay based composite for energy based materials[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 466-472.

[11] BISWAS B, WARR L N, HILDER E F, et al. Biocompatible functionalisation of nanoclays for improved environmental remediation[J]. Chemical Society Reviews, 2019, 48(14): 3740-3770.

[12] 王爱勤,王文波,郑易安.凹凸棒石棒晶束解离及其纳米功能复合材料[M].北京:科学出版社,2014.

[13] 王爱勤,牟 斌,张俊平,等.ATP新型功能材料及应用[M].北京:科学出版社,2021.

[14] LIU F L, MA S H, REN K, et al. Mineralogical phase separation and leaching characteristics of typical toxic elements in Chinese lignite fly ash[J]. Science of the Total Environment, 2020, 708: 135095.

[15] JEE S C, KIM M, SHINDE S K, et al. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments[J]. Applied Surface Science, 2020, 509: 145358.

[16] SHARMA B, SUNG J S, KADAM A A, et al. Adjustable n-p-n gas sensor response of Fe3O4-HNTs doped Pd nanocomposites for hydrogen sensors[J]. Applied Surface Science, 2020, 530: 147272.

[17] FU Q S, LIN G, CHEN X D, et al. Mechanically reinforced PVdF/PMMA/SiO2 composite membrane and its electrochemical properties as a separator in lithium-ion batteries[J]. Energy Technology, 2018, 6(1): 144-152.

[18] WU F X, LV H F, CHEN S Q, et al. Natural vermiculite enables high-performance in lithium-sulfur batteries via electrical double layer effects[J]. Advanced Functional Materials, 2019, 29(27): 1902820.

[19] WAN T, ZOU C Z, WANG L, et al. Hectorite effects on swelling and gel properties of hectorite/poly(AM/IA) nanocomposite hydrogels[J]. Polymer Bulletin, 2015, 72(5): 1113-1125.

[20] ELZBIECIAK M, WODKA D, ZAPOTOCZNY S, et al. Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(1): 277-283.

[21] ELDEEB A B, BRICHKIN V N, BERTAU M, et al. Solid state and phase transformation mechanism of kaolin sintered with limestone for alumina extraction[J]. Applied Clay Science, 2020, 196: 105771.

[22] LIU F F, CHUAN X Y. Recent developments in natural mineral-based separators for lithium-ion batteries[J]. RSC Advances, 2021, 11(27): 16633-16644.

[23] XIONG P, ZHANG F, ZHANG X, et al. Atomic-scale regulation of anionic and cationic migration in alkali metal batteries[J]. Nature Communications, 2021, 12: 4184.

[24] YANG Y F, LI B C, LI L X, et al. A Superlephilic/superhydrophobic and thermostable separator based on silicone nanofilaments for Li metal batteries[J]. iScience, 2019, 16: 420-432.

[25] HUANG X Z, HE R, LI M, et al. Functionalized separator for next-generation batteries[J]. Materials Today, 2020, 41: 143-155.

[26] KIM M, KIM J K, PARK J H. Clay nanosheets in skeletons of controlled phase inversion separators for thermally stable Li-ion batteries[J]. Advanced Functional Materials, 2015, 25(22): 3399-3404.

[27] SONG Q Q, LI A J, SHI L, et al. Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries[J]. Energy Storage Materials, 2019, 22: 48-56.

[28] XU H, LI D N, LIU Y, et al. Preparation of halloysite/polyvinylidene fluoride composite membrane by phase inversion method for lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 790: 305-315.

[29] DYARTANTI E R, PURWANTO A, WIDIASA I N, et al. Ionic conductivity and cycling stability improvement of PVDF/nano-clay using PVP as polymer electrolyte membranes for LiFePO4 batteries[J]. Membranes, 2018, 8(3): 36.

[30] HE C F, LIU J Q, CUI J Q, et al. A gel polymer electrolyte based on polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery[J]. Solid State Ionics, 2018, 315: 102-110.

[31] DENG C H, JIANG Y H, FAN Z Y, et al. Sepiolite-based separator for advanced Li-ion batteries[J]. Applied Surface Science, 2019, 484: 446-452.

[32] WANG S, ZHANG D L, SHAO Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery[J]. Carbohydrate Polymers, 2019, 214: 328-336.

[33] ZHAO H J, KANG W M, DENG N P, et al. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery[J]. Chemical Engineering Journal, 2020, 384: 123312.

[34] ZHAI Y Y, WANG X W, CHEN Y F, et al. Multiscale-structured polyvinylidene fluoride/polyacrylonitrile/vermiculite nanosheets fibrous membrane with uniform Li+ flux distribution for lithium metal battery[J]. Journal of Membrane Science, 2021, 621: 118996.

[35] FANG C J, YANG S L, ZHAO X F, et al. Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries[J]. Materials Research Bulletin, 2016, 79: 1-7.

[36] SHUBHA N, PRASANTH R, HOON H H, et al. Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)-layered clay nanocomposite fibrous membranes for lithium ion batteries[J]. Materials Research Bulletin, 2013, 48(2): 526-537.

[37] NUNES-PEREIRA J, KUNDU M, GREN A, et al. Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance[J]. Composites Part B: Engineering, 2016, 96: 94-102.

[38] NUNES-PEREIRA J, LOPES A C, COSTA C M, et al. Porous membranes of montmorillonite/poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators[J]. Electroanalysis, 2012, 24(11): 2147-2156.

[39] ZHAO J Y, CHEN D J, BOATENG B, et al. Atomic interlamellar ion path in polymeric separator enables long-life and dendrite-free anode in lithium ion batteries[J]. Journal of Power Sources, 2020, 451: 227773.

[40] RAJA M, KUMAR T P, SANJEEV G, et al. Montmorillonite-based ceramic membranes as novel lithium-ion battery separators[J]. Ionics, 2014, 20(7): 943-948.

[41] LI J, SONG G C, YU J R, et al. Preparation of solution blown polyamic acid nanofibers and their imidization into polyimide nanofiber mats[J]. Nanomaterials, 2017, 7(11): 395.

[42] TIAN L L, XIONG L, HUANG C, et al. Gel hybrid copolymer of organic palygorskite and methyl methacrylate electrolyte coated onto celgard 2325 applied in lithium ion batteries[J]. Journal of Applied Polymer Science, 2019, 136(38): 47970.

[43] XIE Y, CHEN X F, HAN K, et al. Natural halloysite nanotubes-coated polypropylene membrane as dual-function separator for highly safe Li-ion batteries with improved cycling and thermal stability[J]. Electrochimica Acta, 2021, 379: 138182.

[44] LIU Y, JIANG Y S, LI F F, et al. Pore structure control of expanded dickite and its application as a clay coating layer on cross-linked nonwoven fabrics for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(6): A1082-A1091.

[45] LI D N, XU H, LIU Y, et al. Fabrication of diatomite/polyethylene terephthalate composite separator for lithium-ion battery[J]. Ionics, 2019, 25(11): 5341-5351.

[46] LI D N, LI Y, YANG K, et al. A porous diatomite ceramic separator for lithium ion batteries[J]. New Journal of Chemistry, 2021, 45(35): 15840-15850.

[47] HUANG C H, JI H, GUO B, et al. Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators[J]. Cellulose, 2019, 26(11): 6669-6681.

[48] CARTER M, PAREKH M H, TOMAR V, et al. Flame retardant vermiculite coated on polypropylene separator for lithium-ion batteries[J]. Applied Clay Science, 2021, 208: 106111.

[49] YANG Y F, WANG W K, ZHANG J P. A waterborne superLEphilic and thermostable separator based on natural clay nanorods for high-voltage lithium-ion batteries[J]. Materials Today Energy, 2020, 16: 100420.

[50] GUO J L, ZHANG Y, FU S X, et al. Sepiolite-assisted separator modification process for high-voltage LiNi0.5Mn1.5O4 batteries and the influence on electrodes[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11117-11127.

[51] XU R, SUN Y Z, WANG Y F, et al. Two-dimensional vermiculite separator for lithium sulfur batteries[J]. Chinese Chemical Letters, 2017, 28(12): 2235-2238.

[52] YANG Y F, ZHANG J P. Layered nanocomposite separators enabling dendrite-free lithium metal anodes at ultrahigh current density and cycling capacity[J]. Energy Storage Materials, 2021, 37: 135-142.

[53] AHN W, LIM S N, LEE D U, et al. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9461-9467.

[54] YANG Y F, ZHANG J P. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators[J]. Advanced Energy Materials, 2018, 8(25): 1801778.

[55] WANG W K, YANG Y F, LUO H M, et al. A separator based on natural illite/smectite clay for highly stable lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2020, 576: 404-411.

[56] WANG W K, YANG Y F, LUO H M, et al. Design of advanced separators for high performance Li-S batteries using natural minerals with 1D to 3D microstructures[J]. Journal of Colloid and Interface Science, 2022, 614: 593-602.

[57] SUN W H, SUN X G, AKHTAR N, et al. Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 364-374.

[58] KWON Y M, KIM J, CHO K Y, et al. Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li-S batteries[J]. Journal of Energy Chemistry, 2021, 60: 334-340.

[59] YANG M, NAN J, CHEN W, et al. Interfacial engineering of polypropylene separator with outstanding high-temperature stability for highly safe and stable lithium-sulfur batteries[J]. Electrochemistry Communications, 2021, 125: 106971.

[60] ZENG G F, LIU Y P, CHEN D J, et al. Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries[J]. Advanced Energy Materials, 2021, 11(44): 2102058.

[61] LI Q C, SONG Y Z, XU R Z, et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano, 2018, 12(10): 10240-10250.

[62] 胡 安,袁 鸽,张 宁,等.黏土矿物在电池领域的应用研究进展[J].新能源进展,2020,8(1):56-61.

[63] ESER N, NAL M, ELIK M, et al. Preparation and characterization of polymethacrylamide/halloysite composites[J]. Polymer Composites, 2020, 41(3): 893-899.

[64] NI X M, LI Z H, WANG Y B. Adsorption characteristics of anionic surfactant sodium dodecylbenzene sulfonate on the surface of montmorillonite minerals[J]. Frontiers in Chemistry, 2018, 6: 390.

[65] YAO P C, ZHU B, ZHAI H W, et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density[J]. Nano Letters, 2018, 18(10): 6113-6120.

[66] MEJA A, DEVARAJ S, GUZMN J, et al. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers-a feasibility study in lithium metal polymer batteries[J]. Journal of Power Sources, 2016, 306: 772-778.

[67] XU H L, YE W, WANG Q R, et al. An in situ photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9826-9836.

[68] FENG J W, AO X H, LEI Z W, et al. Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries[J]. Electrochimica Acta, 2020, 340: 135995.

[69] WANG H Y, ZHANG S S, ZHU M, et al. Remarkable heat-resistant halloysite nanotube/polyetherimide composite nanofiber membranes for high performance gel polymer electrolyte in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 808: 303-310.

[70] ZHU M, LAN J L, TAN C Y, et al. Degradable cellulose acetate/polylactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes[J]. Journal of Materials Chemistry A, 2016, 4(31): 12136-12143.

[71] WANG Y, LI X Y, QIN Y Y, et al. Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries[J]. Nano Energy, 2021, 90: 106490.

[72] CHEN L, LI W X, FAN L Z, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 1901047.

[73] PORTHAULT H, CALBERG C, AMIRAN J, et al. Development of a thin flexible Li battery design with a new gel polymer electrolyte operating at room temperature[J]. Journal of Power Sources, 2021, 482: 229055.

[74] CHEN-YANG Y W, CHEN Y T, CHEN H C, et al. Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery[J]. Polymer, 2009, 50(13): 2856-2862.

[75] CUI Z M, ZU C X, ZHOU W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931.

[76] TANG W J, TANG S, ZHANG C J, et al. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets[J]. Advanced Energy Materials, 2018, 8(24): 1800866.

[77] TANG W J, TANG S, GUAN X Z, et al. High-performance solid polymer electrolytes filled with vertically aligned 2D materials[J]. Advanced Functional Materials, 2019, 29(16): 1900648.

[78] LIN Y, WANG X M, LIU J, et al. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2017, 31: 478-485.

[79] ZHAI P F, PENG N, SUN Z Y, et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2020, 8(44): 23344-23353.

孟贵林, 杨燕飞, 王万凯, 周正强, 张俊平. 黏土矿物纳米材料在锂电池隔膜和固态电解质中的应用研究进展[J]. 硅酸盐通报, 2022, 41(6): 2167. MENG Guilin, YANG Yanfei, WANG Wankai, ZHOU Zhengqiang, ZHANG Junping. Application of Clay Mineral Nanomaterials in Lithium Battery Separators and Solid-State Electrolytes[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2167.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!