光谱学与光谱分析, 2023, 43 (10): 3098, 网络出版: 2024-01-11  

激光诱导击穿光谱结合人工神经网络鉴别不同产地的丹参药材

Identification of Salvia Miltiorrhiza From Different Origins by LaserInduced Breakdown Spectroscopy Combined with Artificial Neural Network
作者单位
1 西安石油大学化学化工学院, 陕西 西安 710065
2 陕西省非常规油气勘探开发协同创新中心, 陕西 西安 710065
3 陕西理工大学化学与环境科学学院, 陕西 汉中 723000
摘要
不同产地丹参药材的质量差异显著, 亟需建立准确、 快速的分析鉴别方法, 对丹参药材的产地进行识别。 激光诱导击穿光谱(LIBS)具有快速、 实时、 高效、 等特点, 克服了传统分析方法时间长、 程序复杂等问题。 人工神经网络(ANN)方法则具有强大的学习和泛化能力, 是一种快速、 准确的分析方法。 采用LIBS技术结合ANN方法构建了对不同产地丹参药材的鉴别方法。 实验首先收集来自安徽、 甘肃等六个不同产地的丹参样品, 并通过LIBS光谱仪对丹参样品进行光谱采集; 之后对丹参LIBS光谱的元素特征峰进行比对, 发现不同产地丹参样品的元素发射谱线强度存在着差异, 如Fe元素(238.20, 373.71 nm)和Ca元素(315.89, 317.93 nm)等; 采用最大最小归一化(MMN)、 标准正态变换(SNV)、 均值中心化(MC)、 Savitzky-Golay平滑滤波(SG)以及多元散射校正(MSC)五种预处理方法对LIBS光谱数据进行预处理优化, 减少光谱噪声以及其他干扰信息的影响; 最后分别搭建ANN分类模型, 从测试集分类准确率、 每类产地的敏感性、 精确率和特异性等方面进行比较, 选择最优模型。 基于原谱的ANN模型测试集分类准确率为94.24%; SNV、 MC两种方法并没有提升ANN模型的分类能力; MMN、 SG及MSC三种预处理方法均提升了ANN的分类效果。 SG-ANN模型取得了最佳鉴别效果, 外部测试集分类准确率为98.15%, 同时具有更高的敏感性、 精确率和特异性, 其中, 安徽、 河南两地丹参样品的判别结果最好, 敏感性、 精确率及特异性均达到100.00%, 其余四种产地丹参样品的敏感性、 精确率及特异性也在95.00%以上。 该结果表明, 选择合适的光谱预处理方法, 能显著提升ANN模型对于丹参产地的预测分类能力, 构建一种相关性更强的定性分析模型。 研究结果表明LIBS技术结合人工神经网络方法是一种很有前景的丹参药材分析鉴别方法, 为中药材质量监督体系提供一种新思路。
Abstract
The quality of Salvia miltiorrhiza in different origins varies greatly, and it is urgent to establish an accurate and rapid analytical method for discrimination. Laser-induced breakdown spectroscopy (LIBS) has the advantages of fast, real-time, high efficiency, which overcomes many problems of traditional analysis methods. Artificial neural network (ANN) has strong learning and generalization abilities, a fast and accurate analysis method. Therefore, a method for discriminating Salvia miltiorrhiza from different geographical origins was developed by using LIBS combined with ANN. In the experiment, the samples of Salvia miltiorrhiza from six different origins, such as Anhui and Gansu provinces were collected, and the spectra of Salvia miltiorrhiza samples were collected by LIBS spectrometer. Then, comparing the element characteristic peaks of LIBS, it was found that there are differences in the element emission intensity of Salvia miltiorrhiza from different origins, such as Fe (238.20, 373.71 nm) and Ca (315.89, 317.93 nm). A supervised classification model was established by the ANN method combined with 5 different spectral preprocessing methods: maximum and minimum normalization (MMN), mean centralization (MC), standard normal transformation (SNV), Savitzky-Golay smooth filtering (SG) and multiple scattering correction (MSC). The RAW-ANN model has achieved a test set classification accuracy of 94.54%; SNV and MC methods did not improve the classification ability of the ANN model; And the three preprocessing methods of MMN, SG, and MSC all have improved the classification performance of the ANN model. The SG-ANN model achieved the best classification effect, with a test set classification accuracy of 98.15%. At the same time, it has higher sensitivity, precision and specificity, of which Anhui and Henan provinces have the best discrimination results, with sensitivity, precision and specificity reaching 100.00%. The other four orgins sensitivity, precision and specificity are also above 95.00%. The results showed that selecting an appropriate spectral preprocessing method could significantly improve the classification ability of the ANN method and build a more relevant qualitative analysis model. The above results show that LIBS combined with ANN is a promising method for analysing and identifying Salvia miltiorrhiza, which provides a new idea for the quality supervision system of Chinese medicinal materials.
参考文献

[1] Shi Min, Huang Fenfen, Deng Changping, et al. Critical Reviews in Food Science and Nutrition, 2019, 59(6): 953.

[2] Xie Fan, Zhang Bingcai, Dai Shengfeng, et al. Journal of Ethnopharmacology, 2021, 281: 114346.

[3] Shi Min, Luo Xiuqin, Ju Guanhua, et al. Journal of Agricultural and Food Chemistry, 2016, 64(12): 2523.

[4] Guo Tao, Feng Weihong, Liu Xiaoqian, et al. Journal of Pharmaceutical and Biomedical Analysis, 2016, 123: 16.

[5] Xia Hua, Dong Fengzhong, Wu Bian, et al. Chinese Physics B, 2015, 24(3): 034204.

[6] Shi Mingxin, Wu Jian, Zhou Ying, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 192: 106428.

[7] Guo Lianbo, Li Xiangyou, Xiong Wei, et al. Frontiers of Physics, 2016: 11(6): 1.

[8] Zhang Tianlong, Tang Hongsheng, Li Hua, Journal of Chemometrics, 2018, 32(11): e2983.

[9] Liao Wenlong, Lin Qingyu, Xie Shichen, et al. Analytica Chimica Acta, 2018, 1043: 64.

[10] Cai Ytsma, Darby Dyar. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 191: 106395.

[11] Yan Chunhua, Liang Jing, Zhao Mingjing, et al. Analytica Chimica Acta, 2019, 1080: 35.

[12] Yuan Rui, Tang Yun, Zhu Zhihao, et al. Analytica Chimica Acta, 2019, 1064: 11.

[13] Qi Juan, Zhang Tianlong, Tang Hongsheng, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 288.

[14] Liao Wenlong, Lin Qingyu, Xu Ya, et al. Nanoscale, 2019, 11(12): 5346.

[15] Zhang Ying, Zhang Tianlong, Li Hua. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 181: 106218.

[16] Liu Fei, Wang Wei, Shen Tingting, et al. Sensors, 2019, 19(6): 1453.

[17] Wang Jinmei, Xue Shuwen, Zheng Peichao, et al. Analytical Letters, 2017, 50(12): 2000.

[18] Shen Tingting, Li Weijiao, Zhang Xi, et al. Molecules, 2019, 24(8): 1525.

[19] ZHAO Wen-ya, MIN Hong, LIU Shu, et al(赵文雅, 闵 红, 刘 曙, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(7): 1998.

[20] SONG Hai-sheng, MA Lin-zhao, ZHU En-gong, et al(宋海声, 麻林召, 朱恩功, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2020, 57(15): 153002.

[21] Wang Jinmei, Liao Xiangyu, Zheng Peichao, et al. Analytical Letters, 2018, 51(4): 575.

[22] https://physics.nist.gov/PhysRefData/Handbook/periodictable.htm.

[23] Li Wenbing, Lu Jidong, Dong Meirong, et al. Energy & Fuels, 2018, 32(1): 24.

孙成玉, 焦龙, 闫娜莹, 闫春华, 屈乐, 张晟瑞, 马羚. 激光诱导击穿光谱结合人工神经网络鉴别不同产地的丹参药材[J]. 光谱学与光谱分析, 2023, 43(10): 3098. SUN Cheng-yu, JIAO Long, YAN Na-ying, YAN Chun-hua1, QU Le, ZHANG Sheng-rui, MA Ling. Identification of Salvia Miltiorrhiza From Different Origins by LaserInduced Breakdown Spectroscopy Combined with Artificial Neural Network[J]. Spectroscopy and Spectral Analysis, 2023, 43(10): 3098.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!