发光学报, 2018, 39 (11): 1549, 网络出版: 2018-12-25  

基于数据线控制发光的A-IGZO薄膜晶体管集成AMOLED像素电路

A-IGZO Thin-film Transistors Integrated AMOLED Pixel Circuit with Data Line Controlled Light-emitting
作者单位
中南大学 物理与电子学院, 湖南 长沙 410083
摘要
本文提出了一种采用铟镓锌氧化物(IGZO)薄膜晶体管(TFT)的有源矩阵有机发光二极管(AMOLED)显示器的新型补偿结构。它利用数据线关闭电源和驱动晶体管之间的控制晶体管, 以抑制编程期间的泄漏电流。在所提出的电路和传统电路之间进行电路性能的比较, 表明所提出的像素电路可以有效地补偿驱动晶体管的阈值电压偏移和迁移率变化。当VTH飘移2 V和μ增加30%时, IOLED误差率可以分别降低至小于5%和9%。此外, 由于使用同时驱动方法, 因此所需的最小编程时间可以被详细推导出来。所提出的像素电路的编程能力和机制已经通过FPGA平台和离散的场效应器件所证实。尽管所提出的像素电路具有非常简单的驱动结构, 但它能够提高补偿精度。
Abstract
A new compensation structure for active matrix organic light emitting diode (AMOLED) display using indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) was proposed. It featured adopting the data line to turn off controlling transistor between the power supply and the driving transistor to suppress leakage current during the programming time. Comparison of circuit performances was carried out between the proposed circuit and the conventional ones. It is proven that the proposed pixel circuit can efficiently compensate threshold voltage shift and mobility variations of the driving transistor. And IOLED discrepancy can be decreased to be less than 5% and 9%, with VTH shift of 2 V and mobility increasing of 30%, respectively. Furthermore, as simultaneous driving method is used, the minimum required programming time is derived in details. The programming ability and mechanism of the proposed pixel circuit are well proven by discrete field-effect devices using FPGA platform. Although the proposed pixel circuit has much simplified driving structure, it has improved compensation accuracy.
参考文献

[1] LEE J H, KIM J H, HAN M K. A new a-Si∶H TFT pixel circuit compensating the threshold voltage shift of a-Si∶H TFT and OLED for active matrix OLED [J]. IEEE Electron Dev. Lett., 2005, 26(12):897-899.

[2] NAM W J, LEE J H, KIM C Y, et al.. High-aperture pixel design employing VDD line elimination for active matrix organic light emitting diode display [J]. Jpn. J. Appl. Phys., 2006, 45(4A):2433-2436.

[3] SHIN M S, JO Y R, KWON O K. Driving method for compensating reliability problem of hydrogenated amorphous silicon thin film transistors and image sticking phenomenon in active matrix organic light-emitting diode displays [J]. Jpn. J. Appl. Phys., 2011, 50(50):559-595.

[4] ASHTIANI S J, CHAJI G R, NATHAN A. AMOLED pixel circuit with electronic compensation of luminance degradation [J]. J. Disp. Technol., 2007, 3(1):36-39.

[5] LIN C L, HUNG C C, CHEN P S, et al.. New voltage-programmed AMOLED pixel circuit to compensate for nonuniform electrical characteristics of LTPS TFTs and voltage drop in power line [J]. IEEE Trans. Electron Dev., 2014, 61(7):2454-2458.

[6] LIN C L, CHANG W Y, HUNG C C,et al.. LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display [J]. IEEE Electron Dev. Lett., 2012, 33(5):700-702.

[7] CHOI S M, RYU D H, KIM K N, et al.. Voltage drop compensation method for active matrix organic light emitting diode displays [J]. Jpn. J. Appl. Phys., 2011, 50(3):1435-1448.

[8] LIN C L, HUNG C C, CHANG W Y, et al.. Novel a-Si∶H AMOLED pixel circuit to ameliorate OLED luminance degradation by external detection [J]. IEEE Electron Dev. Lett., 2011, 32(12):1716-1718.

[9] MUNZENRIEDER N, CHREENACK K H, TROSTER G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs [J]. IEEE Trans. Electron Dev., 2011, 58(7):2041-2048.

[10] OHARA H, SASAKI T, NODA K, et al.. 4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In-Ga-Zn-oxide thin-film transistors with suppressed variation [J]. Jpn. J. Appl. Phys., 2010, 49(3):03CD02-1-6.

[11] OSADA T, AKIMOTO K, SATO T, et al.. Development of liquid crystal display panel integrated with drivers using amorphous In-Ga-Zn-oxide thin film transistors [J]. Jpn. J. Appl. Phys., 2011, 49(3):03CC02-1-4.

[12] DONG H K, KANG I, SANG H R, et al.. Self-aligned coplanar a-IGZO TFTs and application to high-speed circuits [J]. IEEE Electron Dev. Lett., 2011, 32(10):1385-1387.

[13] JEON Y W, KIM S, LEE S, et al.. Subgap density-of-states-based amorphous oxide thin film transistor simulator (deaots) [J]. IEEE Trans. Electron Dev., 2010, 57(11):2988-3000.

[14] LIN C L, CHANG W Y, HUNG C C. Compensating pixel circuit driving AMOLED display with a-IGZO TFTs [J]. IEEE Electron Dev. Lett., 2013, 34(9):1166-1168.

[15] KIM Y, KIM Y, LEE H. A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio [J]. J. Disp. Technol., 2014, 10(1):80-83.

[16] KIMURA M, IMAI S. Degradation evaluation of alpha-IGZO TFTs for application to AM-OLEDs [J]. IEEE Electron Dev. Lett., 2010, 31(9):963-965.

[17] CHO E N, KANG J H, CHANG E K, et al.. Analysis of bias stress instability in amorphous InGaZnO thin-film transistors [J]. IEEE Trans. Electron Dev., 2011, 11(1):112-117.

[18] LIAO C, DENG W, SONG D, et al.. Mirrored OLED pixel circuit for threshold voltage and mobility compensation with IGZO TFTs [J]. Microelectron. J., 2015, 46(10):923-927.

[19] KIM Y, KANICKI J, LEE H. An a-InGaZnO TFT pixel circuit compensating threshold voltage and mobility variations in AMOLEDs [J]. J. Disp. Technol., 2014, 10(5):402-406.

[20] CHEN C, ABE K, FUNG T C, et al.. Amorphous In-Ga-Zn-O thin film transistor current-scaling pixel electrode circuit for active-matrix organic light-emitting displays [J]. Jpn. J. Appl. Phys., 2009, 48(3):03B025-1-7.

[21] WANG C C, LENG C L, WANG L Y, et al.. An accurate and fast current-biased voltage-programmed AMOLED pixel circuit with OLED biased in AC mode [J]. J. Disp. Technol., 2017, 11(7):615-619.

[22] BANG J S, KIM H S, KIM K D, et al.. A hybrid AMOLED driver IC for real-time TFT nonuniformity compensation [J]. IEEE J. Solid-State Circuits, 2016, 51(4):966-978.

[23] MO Y G, KIM M, KANG C K, et al.. Amorphous-oxide TFT backplane for large-sized AMOLED TVs [J]. J. Soc. Inf. Disp., 2012, 19(1):16-20.

[24] KIM Y, KANICKI J, LEE H. An a-InGaZnO TFT pixel circuit compensating threshold voltage and mobility variations in AMOLEDs [J]. J. Disp. Technol., 2014, 10(5):402-406.

[25] LEE J P, JEON H S, MOON D S, et al.. Threshold voltage and IR drop compensation of an AMOLED pixel circuit without a VDD line [J]. IEEE Electron Dev. Lett., 2014, 35(1):72-74.

[26] CHAJI G R, ALEXANDER S, NATHAN A, et al.. A low-cost stable amorphous silicon AMOLED display with full VT and VOLED shift compensation [J]. SID Sym. Digest., 2007, 38(1):1580-1583.

[27] CHEU W J, TAI Y H, LIN C H, et al.. In-cell active touch circuit using a-Si TFT for large size panel [J]. SID Sym. Digest., 2017, 48(1):738-741.

[28] TAI Y H, CHIU H L, CHOUL S. Large-area capacitive active touch panel using the method of pulse overlapping detection [J]. J. Disp. Technol., 2013, 9(3):170-175.

王兰兰, 鲁力, 于天宝, 廖聪维, 黄生祥, 邓联文. 基于数据线控制发光的A-IGZO薄膜晶体管集成AMOLED像素电路[J]. 发光学报, 2018, 39(11): 1549. WANG Lan-lan, LU Li, YU Tian-bao, LIAO Cong-wei, HUANG Sheng-xiang, DENG Lian-wen. A-IGZO Thin-film Transistors Integrated AMOLED Pixel Circuit with Data Line Controlled Light-emitting[J]. Chinese Journal of Luminescence, 2018, 39(11): 1549.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!