人工晶体学报, 2022, 51 (7): 1152, 网络出版: 2022-08-12   

生长气压对分子束外延β-Ga2O3薄膜特性的影响

Effect of Growth Pressure on Properties of β-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy
作者单位
1 厦门大学物理学系,半导体光电材料及其高效转换器件协同创新中心,福建省半导体材料及应用重点实验室,微纳光电子材料与器件教育部工程研究中心,厦门 361005
2 厦门市未来显示技术研究院,嘉庚创新实验室,厦门 361005
摘要
本文采用分子束外延技术在具有6°斜切角的c面蓝宝石衬底上外延β-Ga2O3薄膜,系统研究了生长气压对薄膜特性的影响。X射线衍射谱和表面形貌分析表明,不同生长气压下所外延的薄膜表面平整,均具有(201)择优取向。并且,其结晶质量和生长速率均随生长气压增大而逐渐提高。通过X射线光电子能谱分析发现,生长气压增大使得氧空位的浓度大幅下降,高价态Ga比例增大,最终使得O/Ga原子数之比接近理想Ga2O3材料的化学计量比值。利用Tauc公式和乌尔巴赫带尾模型进行计算,结果表明随着生长气压的增大,样品的光学带隙由4.94 eV增加到5.00 eV,乌尔巴赫能量由0.47 eV下降到0.32 eV,证明了生长气压的增大有利于降低薄膜中的缺陷密度,提高薄膜晶体质量。
Abstract
The effect of growth pressure on the properties of β-Ga2O3 thin films epitaxial on c-plane sapphire substrate with 6° oblique cut angle by plasma-assisted molecular beam epitaxy were systematically studied. All of the epitaxial films present (201) orientated single-crystalline structure with smooth surface morphology. In addition, the crystalline quality and growth rate increase gradually with the increase of the growth pressure, as demonstrated by X-ray diffraction and scanning electron microscopy characterizations. According to the X-ray photoelectron spectroscopy measurement results, the percentage of oxygen vacancy and Ga3+ oxidation states decrease and increase, respectively, with increasing growth pressure, resulting in the increment of atomic ratio of O to Ga. Moreover, through the calculation of Tauc frormula and Urbach tail model, the results show that the optical band gap of the films increase from 4.94 eV to 5.00 eV, while Urbach energy decreases from 0.47 eV to 0.32 eV. These results suggest that the crystal quality and optical property of β-Ga2O3 were improved by increasing the growth pressure.
参考文献

[1] DAI X, ZHENG Q, ZHANG X, et al. High performance photoresponse of transparent β-Ga2O3 film prepared by polymer-assisted deposition[J]. Materials Letters, 2021, 284: 128912.

[2] LI X, LU H L, MA H P, et al. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition[J]. Current Applied Physics, 2019, 19(2): 72-81.

[3] KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731.

[4] BABAN C, TOYODA Y, OGITA M. Oxygen sensing at high temperatures using Ga2O3 films[J]. Thin Solid Films, 2005, 484(1/2): 369-373.

[5] FENG Z Q, CAI Y C, LI Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application[J]. Applied Physics Letters, 2020, 116(24): 243503.

[6] WANG Y G, GONG H H, LV Y J, et al. 2.41 kV vertical p-NiO/n-Ga2O3 heterojunction diodes with a record Baliga's figure-of-merit of 5.18 GW/cm2[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 3743-3746.

[7] HOU X H, ZHAO X L, ZHANG Y, et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering[J]. Advanced Materials, 2022, 34(1): e2106923.

[8] JIANG Z X, WU Z Y, MA C C, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product[J]. Materials Today Physics, 2020, 14: 100226.

[9] WU Z Y, JIANG Z X, MA C C, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films[J]. Materials Today Physics, 2021, 17: 100356.

[10] OTSUKA F, MIYAMOTO H, TAKATSUKA A, et al. Large-size (1.7×1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio[J]. Applied Physics Express, 2022, 15(1): 016501.

[11] GOTO K, KONISHI K, MURAKAMI H, et al. Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties[J]. Thin Solid Films, 2018, 666: 182-184.

[12] ANTORO I D, ITOH S, YAMADA S, et al. Influence of rapid thermal annealing at varied temperatures on conductivity activation energy and structural properties of Si-doped β-Ga2O3 film grown by pulsed laser deposition[J]. Ceramics International, 2019, 45(1): 747-751.

[13] ZHOU H T, CONG L J, MA J G, et al. High-performance high-temperature solar-blind photodetector based on polycrystalline Ga2O3 film[J]. Journal of Alloys and Compounds, 2020, 847: 156536.

[14] OU S L, WUU D S, FU Y C, et al. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition[J]. Materials Chemistry and Physics, 2012, 133(2/3): 700-705.

[15] OHYA Y, OKANO J, KASUYA Y, et al. Fabrication of Ga2O3 thin films by aqueous solution deposition[J]. Journal of the Ceramic Society of Japan, 2009, 117(1369): 973-977.

[16] OGITA M, SAIKA N, NAKANISHI Y, et al. Ga2O3 thin films for high-temperature gas sensors[J]. Applied Surface Science, 1999, 142(1/2/3/4): 188-191.

[17] VOGT P, BIERWAGEN O. Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: incorporation of Ga vs. Ga2O desorption[J]. Applied Physics Letters, 2016, 108(7): 072101.

[18] GUO D Y, WU Z P, AN Y H, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 023507.

[19] SHI F F, HAN J, XING Y H, et al. Annealing effects on properties of Ga2O3 films deposited by plasma-enhanced atomic layer deposition[J]. Materials Letters, 2019, 237: 105-108.

[20] ZHANG G X, ZHANG H M, WANG R F, et al. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7307-7318.

[21] ZHANG T, LI Y F, CHENG Q, et al. Influence of O2 pulse on the β-Ga2O3 films deposited by pulsed MOCVD[J]. Ceramics International, 2022, 48(6): 8268-8275.

蔡文为, 刘祥炜, 王浩, 汪建元, 郑力诚, 王永嘉, 周颖慧, 杨旭, 李金钗, 黄凯, 康俊勇. 生长气压对分子束外延β-Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2022, 51(7): 1152. CAI Wenwei, LIU Xiangwei, WANG Hao, WANG Jianyuan, ZHENG Licheng, WANG Yongjia, ZHOU Yinghui, YANG Xu, LI Jinchai, HUANG Kai, KANG Junyong. Effect of Growth Pressure on Properties of β-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy[J]. Journal of Synthetic Crystals, 2022, 51(7): 1152.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!