作者单位
摘要
1 厦门大学物理科学与技术学院福建省半导体材料及应用重点实验室,福建 厦门 361005
2 厦门大学九江研究院,江西 九江 332000
采用快速热退火方法制备了尺寸较小、密度较高的银纳米颗粒阵列,其面密度在一定区间可调控。通过实验测得银纳米颗粒阵列的远场反射和透射谱,进一步经理论数值变换,研究了所制备银纳米颗粒阵列的吸收、散射及消光特性。从谱线的变化趋势可知,当银纳米颗粒阵列的面密度不断增大、即颗粒间距逐步减小时,所产生的局域表面等离激元共振的波长发生红移;而且相邻金属纳米颗粒的耦合作用越强,波长红移越明显。该方法为分析高密度、小尺寸,特别是粒子间存在耦合的金属纳米颗粒阵列的等离激元特性提供了有效参考。
表面等离激元 金属纳米颗粒阵列 相互耦合 远场光谱 数值变换 
激光与光电子学进展
2023, 60(23): 2325001
作者单位
摘要
1 厦门大学物理学系,半导体光电材料及其高效转换器件协同创新中心,福建省半导体材料及应用重点实验室,微纳光电子材料与器件教育部工程研究中心,厦门 361005
2 厦门市未来显示技术研究院,嘉庚创新实验室,厦门 361005
本文采用分子束外延技术在具有6°斜切角的c面蓝宝石衬底上外延β-Ga2O3薄膜,系统研究了生长气压对薄膜特性的影响。X射线衍射谱和表面形貌分析表明,不同生长气压下所外延的薄膜表面平整,均具有(201)择优取向。并且,其结晶质量和生长速率均随生长气压增大而逐渐提高。通过X射线光电子能谱分析发现,生长气压增大使得氧空位的浓度大幅下降,高价态Ga比例增大,最终使得O/Ga原子数之比接近理想Ga2O3材料的化学计量比值。利用Tauc公式和乌尔巴赫带尾模型进行计算,结果表明随着生长气压的增大,样品的光学带隙由4.94 eV增加到5.00 eV,乌尔巴赫能量由0.47 eV下降到0.32 eV,证明了生长气压的增大有利于降低薄膜中的缺陷密度,提高薄膜晶体质量。
β-Ga2O3薄膜 分子束外延 生长气压 缺陷密度 晶体质量 光学特性 β-Ga2O3 thin film molecular beam epitaxy growth pressure defect density crystal quality optical property 
人工晶体学报
2022, 51(7): 1152
王永嘉 1杨旭 1,2李金钗 1,2,*黄凯 1,2,*康俊勇 1
作者单位
摘要
1 厦门大学 物理学系,微纳光电子材料与器件教育部工程研究中心,福建省半导体材料及应用重点实验室,半导体光电材料及其高效转换器件协同创新中心,福建 厦门 361005
2 厦门市未来显示技术研究院 嘉庚创新实验室,福建 厦门 361005
通过模拟仿真对双波长堆叠的c面InGaN/GaN多量子阱(MQWs)发光二级管的载流子浓度、自发辐射复合率以及极化电场等进行了研究。结果表明,通过调节双波长堆叠的InGaN多量子阱的阱层和垒层厚度,可调控载流子特别是空穴在量子阱有源区的分布,实现双波长发光峰比例调制。进而考察了在相同外延条件下生长的半极性面InGaN/GaN堆叠量子阱LED的发光特性。在此基础上,提出基于多波长堆叠InGaN/GaN多量子阱结构的c面和{1011}或{1122}半极性面混合的单芯片白光LED设计方案,通过调节c面发光光谱在混合光谱中的比例,可获得覆盖大部分可见光波段、色温从4 500~9 000 K可调、且显色指数最高可达91.3的白光。
单芯片白光LED 半极性面 InGaN 极化效应 monolithic white LED semipolarplane InGaN polarization effect 
发光学报
2022, 43(7): 1130
作者单位
摘要
厦门大学物理学系,微纳光电子材料与器件教育部工程研究中心,半导体光电材料及其高效转换器件协同创新中心,福建省半导体材料及应用重点实验室,厦门 361005
AlGaN量子结构是实现高光效、高稳定紫外固态光源的核心。近年来,AlGaN半导体材料及其紫外光源应用研究取得了较大的进展。然而,AlGaN材料的生长制备只能在非平衡条件下完成,涉及的生长动力学问题十分复杂,制约了量子阱等结构品质的提高;材料带隙宽,p型掺杂难度大,激活效率低,限制了载流子注入;光学各向异性显著,不利于光从器件正面出射。因此,AlGaN基紫外、特别是深紫外波段器件性能还有待提高。本文梳理了AlGaN量子结构与紫外光源效率之间的关系,详细阐述和总结了有源区量子结构、p型掺杂量子结构以及光学各向异性调控等方面所面临的挑战及近年来的重要研究进展。
量子结构 紫外光源 AlGaN AlGaN quantum structure UV emission device 
人工晶体学报
2020, 49(11): 2068
作者单位
摘要
1 厦门大学 物理系, 福建省半导体材料及应用重点实验室, 半导体光电材料及其高效转换器件协同创新中心, 福建 厦门 361005
2 中国科学院半导体研究所 半导体材料科学重点实验室, 北京 100083
紫外LED的发光功率和效率还远不能令人们满意,波长短于300 nm的深紫外LED的发光效率普遍较低。厘清高Al组分AlGaN多量子阱结构的发光机制将有利于探索改善深紫外LED的发光效率的新途径、新方法。为此,本文通过金属有机气相外延技术外延生长了表面平整、界面清晰可辨且陡峭的高Al组分AlGaN多量子阱结构材料,并对其进行变温光致发光谱测试,结合数值计算,深入探讨了AlGaN量子阱的发光机制。研究表明,量子阱中具有很强的局域化效应,其发光和局域激子的跳跃息息相关,而发光的猝灭则与局域激子的解局域以及位错引起的非辐射复合有关。
多量子阱结构 深紫外LED 发光机制 AlGaN AlGaN MQW deep UV-LED emission mechanism 
发光学报
2016, 37(5): 513
作者单位
摘要
厦门大学 物理系, 福建 厦门361005
在Zn1-xMgxO中, x=0.4~0.6仍为一个岩盐矿和纤锌矿共存的结构, 影响了其晶格质量。本文利用等离子体辅助的分子束外延设备在c面蓝宝石衬底上外延生长了ZnO/ZnMgO超晶格, 并改变其生长过程中的Ⅱ-Ⅵ比, 利用原子力显微镜、X射线衍射、透射谱和X射线光电子能谱对样品进行了表征分析。发现在较低氧分压下制备的样品结构以岩盐矿为主导, 而在较高氧分压下两相共存并以纤锌矿为主。这种相分离现象与裂解氧原子的密度有关。
超晶格 Ⅱ-Ⅵ比 相分离 MgZnO MgZnO ZnO ZnO superlattice Ⅱ-Ⅵ ratio phase segregation 
发光学报
2014, 35(5): 526
作者单位
摘要
厦门大学 物理系, 福建 厦门 361005
概述了一套基于LabVIEW而搭建的半导体光致发光扫描系统.充分考虑扫描过程中由于外延片荧光信号过于微弱、不均匀背景光噪音可能产生的光谱采集失真以及随后分析谱图所存在的物理参量读取误差等因素, 通过扣除背光源、隔离样品、高斯拟合等方式对测量过程进行优化.同时依托LabVIEW自身强大的仪器控制能力, 如调用动态链接库与ActiveX控件实现了对光谱仪和平移台的通信与控制, 结合其良好的数据分析及显示能力, 实现了对外延片测量、读取、分析处理以及实时显示等过程的自动化整合, 准确高效地提取出样品空间分辨的光致发光特性如峰位、光强等.最后初步分析了所用外延片的发光均匀性, 得出波长分布与生长温度分布基本一致, 肯定了保持生长腔内温度均匀一致的重要性.该系统不仅界面友好、简单易操作、实时性强、智能化高且搭建简单易行, 极大地降低了成本, 方便研究人员进行快捷准确的测试.
实时分析显示 高斯拟合 LabVIEW LabVIEW PLMapping PLMapping Realtime analysis and display Gaussian fitting 
光子学报
2012, 41(7): 790
作者单位
摘要
厦门大学物理与机电工程学院, 福建 厦门 361000
运用平面波展开法(PWE),针对光子晶体在短波长段发光二极管(LED)领域上的应用,主要选择高频禁带模式,研究了4种具有较大应用潜力的二维光子晶体结构,包括正方空气柱结构、三角空气柱结构、正方介质柱结构和三角介质柱结构。在不同晶格常数、占空比(AFF)、柱半径和晶格常数比下,分析了TE模式和TM模式光子禁带的变化。数据分析表明,光子禁带中心波长随AFF增加而变小。相比于其他结构,正方介质柱结构更适于短波段光子晶体LED来提高其出光效率,三角介质柱结构和三角空气柱结构适合用于构造短波段偏振光LED。
光学器件 光子晶体 发光二极管 平面波展开法 光子禁带 
光学学报
2012, 32(6): 0623006
作者单位
摘要
厦门大学 福建省半导体材料与应用重点实验室 物理系及半导体光子学研究中心, 福建 厦门 361005
采用分子束外延方法在室温下于Si(001)表面上生长ZnO材料。实验发现:样品为闪锌矿和六角结构的ZnO混合多晶薄膜,其表面分布着一系列具一定取向的近似长方形的纳米台柱结构。在不同参数的高温退火后,这些梯形台柱将变小,形成梯形纳米环,或分解为较小的纳米柱及其团簇结构等。分析表明:ZnO混合多晶薄膜的形成,以及表面纳米台柱的演变,与Si(001)衬底、较低温的生长温度及热效应等因素相关联。
闪锌矿结构 氧化锌 分子束外延生长 硅(001) zincblende ZnO MBE Si(001) 
发光学报
2010, 31(2): 209

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!