发光学报, 2024, 45 (3): 407, 网络出版: 2024-04-10  

Li(Sc, M)Si2O6∶Cr3+M = Ga3+/Lu3+/Y3+/Gd3+)的近红外发光性能

Near-infrared Luminescence of Li(Sc, M)Si2O6∶Cr3+M = Ga3+/Lu3+/Y3+/Gd3+
卢紫微 1,2,***刘永福 2,*罗朝华 2孙鹏 2蒋俊 2,**
作者单位
1 宁波大学 材料科学与化学工程学院, 浙江 宁波  315211
2 中国科学院 宁波材料技术与工程研究所, 浙江 宁波  315201
摘要
荧光转换型近红外发光二极管(NIR pc-LED)具有体积小、谱带宽、峰位易调谐等优点,是新一代NIR光源发展的前沿,其关键在于研发可被蓝光有效激发的高效率宽带近红外荧光粉。LiScSi2O6∶Cr3+荧光材料的激发波长为460 nm,发射峰位在845 nm,光谱带宽为156 nm,内量子效率为64.4%。基于该体系,本文通过M离子(M = Ga3+,Lu3+,Y3+,Gd3+)取代Sc3+的方式对其性能进行调控。结果表明,引入M离子易生成杂相或发生相变,降低了材料的发光性能。本文从晶体结构出发对其调控过程进行了分析。
Abstract
Near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) are expected to be the next-generation NIR light sources, which have the advantages of small size, broad bandwidth, and easy tuning of emission peaks. The key for NIR pc-LEDs is to develop highly efficient broadband NIR phosphors that can be effectively excited by blue light. LiScSi2O6∶Cr3+can be excited by blue light and emits NIR light peaked at 845 nm with a broad bandwidth of 156 nm and an internal quantum efficiency of 64.4%. Herein, Sc3+ is replaced by M ions (M = Ga3+, Lu3+, Y3+, Gd3+) to regulate the NIR luminescence. The introduction of M ions is easy to form heterogeneous phases or undergo phase transformation, thus reducing the NIR luminescence of the titled material. The regulation processes are analyzed based on the crystal structure.

1 引言

近红外光谱技术具有无损伤、穿透性好等优点,在无损检测、食品安全、夜视与医疗成像等领域具有广泛应用[1-5]。近红外光谱技术与便携智能设备的快速发展对近红外光源提出了器件小型化、光谱宽带化的要求。传统近红外光源,如白炽灯、卤素灯和近红外激光器,谱带宽、体积大、能耗高。近红外发光二极管(Near-infrared light-emitting diode,NIR LED)体积小、能耗低,但其发光范围窄(<50 nm)[5-6]。为此,研究者们提出荧光转换型(Phosphor-converted,PC)近红外发光二极管(NIR pc-LED)技术方案,其是在蓝光芯片上涂覆近红外荧光粉实现近红外光发射,具有体积小、谱带宽、寿命长等优点[6-7]。适合蓝光激发的高效宽带近红外荧光粉成为研究的重点。

Cr3+激活的近红外发光材料得到了广泛研究,蓝光激发下其发光波段通常在700~1 200 nm。其中,发光波段在700~800 nm的近红外荧光材料的内量子效率(70%~100%)和热稳定性(I423K/I298K = 69.1%~97.3%)普遍较高[7-8]。发射波段在800~900 nm的近红外荧光材料通常具有较宽的光谱带宽,但内量子效率(19.5%~91.2%)或者热稳定性(I423K/I298K = 5%~92%)下降,常见的材料体系有ALnP2O7∶Cr3+型磷酸盐、XBO3∶Cr3+ALn3(BO34∶Cr3+型硼酸盐、ALn(Si, Ge)2O6∶Cr3+型硅锗酸盐等[7-8]。受制于“能隙律”,随着近红外发光波长的红移,晶体场强度减弱,发光能级间的间隙减小,非辐射跃迁增强,发光效率及热稳定性逐渐降低[6]。探索同时满足宽带、高效和热稳定性的荧光粉仍然是一个挑战。为了提高近红外发光材料的量子效率、热稳定性等,研究者们采用优化工艺改善材料形貌[9]、调控组分调节晶体场或带隙[10]、共掺杂敏化剂实现能量传递[11]等策略进行性能优化。

目前,已有研究表明辉石型材料ALn(Si, Ge)2O6∶Cr3+A = Li, Na, Mg; Ln = Sc, In, Mg)表现出较为优异的近红外发光特性,发射峰在800~950 nm,光谱带宽在143~205 nm,内量子效率在21%~81.2%,热稳定性在25%~92%[12-24]。其中,LiScSi2O6∶Cr3+的发射峰位在845 nm,光谱带宽为156 nm,内量子效率为64.4%[24]。本文从LiScSi2O6∶Cr3+出发,通过M离子(M = Ga3+, Lu3+, Y3+, Gd3+)取代Sc3+的方式进行材料性能调控,结果发现M离子的引入较易产生杂相或发生相变,降低了材料的发光性能。我们从晶体结构出发,对其发光性质进行了讨论。

2 实验

2.1 样品制备

通过高温固相法制备一系列Li(Sc, M)Si2O6∶Cr3+M = Ga3+/Lu3+/Y3+/Gd3+)样品。使用的原料为Li2CO3(AR, 国药)、Ga2O3(99.99%,阿拉丁)、Y2O3(99.99%,阿拉丁)、Sc2O3(99.99%,阿拉丁)、Lu2O3(99.99%,阿拉丁)、Gd2O3(99.99%,阿拉丁)、SiO2(99.99%,阿拉丁)、Cr2O3(99.95%,阿拉丁)。按照化学计量比称量,其中Li2CO3含量过量10%以弥补高温下分解造成的损失。将称取的原料在研钵中充分混合研磨30 min,再将其转移入刚玉坩埚中,放入马弗炉中烧结。煅烧温度在970~1 200 ℃温度区间(不同基质烧结温度不同),煅烧时长均为10 h。待样品冷却至室温,研磨至粉体进行后续测试。

2.2 样品表征

X射线衍射(X-ray diffraction,XRD)谱通过Bruker D8衍射仪测试,采用Cu靶材,Kα射线(λ = 0.154 056 nm)。漫反射光谱通过LAMBDA紫外可见近红外分光光度计测试。室温下光致发光的激发光谱和发射光谱通过Horiba公司的 FL-311荧光光谱仪测定。

3 结果与讨论

3.1 LiGaSi2O6晶体结构与发光特性

图1(a)为制备得到的LiGa1-xSi2O6xCr3+x = 0%,0.07%,1.5%)样品的XRD图,其在970 ℃下煅烧10 h。可以看出,所有样品都存在LiGaSi2O6(PDF#26-0845)和LiGaSiO4(PDF#79-0211)两种物质相。当x = 0时,即名义组分为LiGaSi2O6基体,其物质相包含LiGaSi2O6和LiGaSiO4。当x = 0.07%时,LiGaSiO4杂质相的衍射峰强度显著增强。当x = 1.5%时,LiGaSiO4杂质相的衍射峰强度降低。这说明,随Cr3+浓度增加,LiGaSiO4杂质相含量先增多后减少。由于LiGaSi2O6与β-LiAlSi2O6(PDF#71-2058)的结构相同,选择β-LiAlSi2O6的结构进行讨论。β-LiAlSi2O6的晶体结构如图1(b)所示,其为四方晶系,空间群为P43212[25]。Li、Al、Si原子均与4个氧原子配位形成[LiO4]、[Al/SiO4]四面体。LiGaSiO4的晶体结构如图1(c)所示,其结构为六角晶系,空间群为R3[26]。Li、Ga、Si原子分别与4个氧原子配位形成[LiO4]、[GaO4] 和[SiO4]四面体。该体系中,Cr3+倾向于占据相同价态的Ga3+R = 0.047 nm,CN = 4)的四面体格位,而不是异价的Li+R = 0.059 nm,CN = 4)和Si4+R = 0.026 nm,CN = 4)格位。一般认为Cr3+在八面体配位环境下表现发光行为,近年来,Rajendran[27]、Wang[28]和Huang[29]等分别在La3Ga5GeO14、Mg3Ga2GeO8与Ca2Ga2GeO7体系中报道了Cr3+在Ga3+的四面体格位表现出宽带近红外发光的行为。

图 1. (a)LiGa1-xSi2O6xCr3+x = 0%,0.07%,1.5%)样品的XRD图;(b)LiAlSi2O6的晶体结构示意图;(c)LiGaSiO4的晶体结构示意图

Fig. 1. (a)XRD pattern of LiGa1-xSi2O6xCr3+x = 0%, 0.07%, 1.5%). (b)Crystal structure of LiAlSi2O6. (c)Crystal structure of LiGaSiO4

下载图片 查看所有图片

图2(a)为LiGaSi2O6基质和LiGaSi2O6∶0.07%Cr3+的漫反射谱。LiGaSi2O6基质本身只在~230 nm处存在较强的本征固有吸收,在350~1 200 nm区域没有明显的吸收。LiGaSi2O6∶0.07%Cr3+除了在 ~230 nm处的吸收峰增强,还在420 nm和600 nm出现了两个吸收峰,分别源于Cr3+自旋允许的4A24T14F)和4A24T24F)跃迁[24]。在800~1 200 nm未见明显的吸收峰,表明不存在Cr4+或者Cr4+的含量极其微弱。这说明,在这个两相共存体系下,Cr主要以三价形式存在于四配位环境中。图2(b)为制备得到的LiGa1-xSi2O6xCr3+x = 0.01%, 0.03%, 0.05%, 0.07%, 0.10%)样品的激发谱。监测720 nm波长时,其由2个峰组成,峰位在420 nm和600 nm,分别来源于Cr3+4A24T14A24T2的能级跃迁[24]图2(c)为样品在420 nm激发下的归一化发射谱,表现出峰位在705,720,729,739 nm的窄带发射,归因于Cr3+2E→4A2自旋禁止跃迁[30]。随着Cr3+掺杂浓度增加,发射光谱半高宽略微展宽。图2(d)为发射强度与Cr3+掺杂浓度的关系图,随Cr3+浓度增加,发光强度先提高后因浓度猝灭而降低,最佳掺杂浓度为0.07%。Meng等[26]报道了 LiGaSiO4∶Cr3+的激发峰位在 422 nm和 620 nm、发射为峰值在 705 nm 和 721 nm 的窄带,最佳掺杂浓度为 0.05%。Yuan等[25]报道了β-LiAlSi2O6∶Cr3+的激发波长为411 nm、发射为峰值在694 nm的窄带。由于LiGaSi2O6结构与β- LiAlSi2O6一致,Ga3+的离子半径大于Al3+(0.039 nm,CN = 4)的离子半径,所以推测LiGaSi2O6∶Cr3+的晶体场强度弱于β-LiAlSi2O6∶Cr3+的晶体场强度。相比β-LiAlSi2O6∶Cr3+,LiGaSi2O6∶Cr3+的发光峰位应红移,光谱带宽应略微展宽。结合该复合相的发射谱,其在705 nm 和720 nm的发射峰源于LiGaSiO4∶Cr3+[26],也可能是两相叠加的结果。该复合相在729 nm和739 nm的发射峰推测源于LiGaSi2O6∶Cr3+。这与之前猜测的LiGaSi2O6∶Cr3+的发光相比β-LiAlSi2O6∶Cr3+光谱峰位红移且展宽相符。

图 2. (a)LiGaSi2O6基质和LiGaSi2O6∶0.07%Cr3+的漫反射谱;LiGa1-xSi2O6xCr3+x = 0.01%,0.03%,0.05%,0.07%,0.10%)样品的激发谱(b)、归一化发射谱(c)以及发射强度和Cr3+浓度的关系(x = 0.01%~1.5%)(d)

Fig. 2. (a)Diffuse reflectance spectra of LiGaSi2O6host and LiGaSi2O6∶0.07%Cr3+. Photoluminescence excitation(λem = 720 nm)(b) and normalized photoluminescence(λex = 420 nm)(c) spectra of LiGa1-xSi2O6xCr3+x = 0.01%, 0.03%, 0.05%, 0.07%, 0.10%), and photoluminescence intensities dependent on Cr3+ concentrations(x = 0.01%-1.5%)(d)

下载图片 查看所有图片

3.2 Li(Sc1-yLuy)Si2O6晶体结构与发光特性

图3(a)为Li(Sc1-yLuy)Si2O6∶Cr3+y = 0%,10%, 20%,30%,40%)样品的XRD图,其在1 200 ℃下煅烧10 h。随着Lu掺杂含量的增多,LiScSi2O6(PDF#83-2068)相逐渐减少,Lu2Si2O7(PDF#35-0326)相逐渐增多。从图3(a)插图可以看出,样品的衍射峰逐渐向大角度偏移。但Lu3+R = 0.086 1 nm,CN = 6)的离子半径大于Sc3+R = 0.074 5 nm,CN = 6)的离子半径,理论上Lu3+的掺杂会导致衍射峰位向小角度偏移; 考虑Lu3+并未直接进入Sc3+的晶体格位,而是直接与SiO2反应生成Lu2Si2O7相,因此LiScSi2O6相逐渐减少。图3(b)为Lu2Si2O7的晶体结构示意图,其为单斜晶系,空间群为C2/m[31]。Lu与6个氧原子配位形成[LuO6]八面体,Si与4个氧原子配位形成[SiO4]四面体。尽管Lu3+提供八面体格位,但其离子半径与Cr3+R = 0.061 5 nm,CN = 6)差距较大(ΔR =(RLu-RCr)/RLu=28.57%)[32],并不利于Cr3+的占位取代。从键长考虑,[LuO6]八面体中Lu—O键长为0.220~0.226 nm,大于LiScSi2O6体系中[ScO6]八面体的Sc—O键长(0.200~0.223 nm)。键长越长,键能越小,原子间的结合力越弱,越不稳定。因此,这可能是Lu2Si2O7虽然有八面体结构但Cr3+发光微弱的原因。

图 3. (a)Li(Sc1-yLuy)Si2O6∶Cr3+y = 0%,10%,20%,30%,40%)样品的XRD图;(b)Lu2Si2O7的晶体结构示 意图

Fig. 3. (a)XRD patterns of Li(Sc1-yLuy)Si2O6∶Cr3+y = 0%, 10%, 20%, 30%, 40%). (b)Crystal structure of Lu2Si2O7

下载图片 查看所有图片

图4(a)为Li(Sc1-yLuy)Si2O6∶Cr3+y = 0%, 10%,20%,30%,40%)样品的激发谱。监测858 nm波长时,其由2个峰组成,峰位在468 nm和675 nm,分别来源于Cr3+4A24T14A24T2的能级跃迁[32-33]图4(b)为样品在420 nm激发下的发射谱,表现出峰位852 nm的宽带发射,归因于Cr3+4T24A2的自旋允许跃迁[33]。随Lu掺杂含量增加,发光强度逐渐降低,这是因为LiScSi2O6主相含量逐渐降低,并不适合Cr3+占位的Lu2Si2O7相逐渐增多。

图 4. Li(Sc1-yLuy)Si2O6∶Cr3+y = 0%,10%,20%,30%,40%)样品的激发谱(a)和发射谱(b)

Fig. 4. Photoluminescence excitation(λem = 852 nm)(a) and photoluminescence(λex = 468 nm)(b) spectra of Li-(Sc1-yLuy)Si2O6∶Cr3+y = 0%,10%,20%,30%, 40%)

下载图片 查看所有图片

3.3 LiYSi2O6晶体结构

图5(a)为制备得到的LiYSi2O6∶Cr3+样品的XRD图,其在970 ℃下煅烧10 h。可以看出,样品的XRD衍射峰以Y2Si2O7(PDF#38-0440)物质相为主,以Li2Si3O5物质相为辅。Y2Si2O7的晶体结构如图5(b)所示,其为单斜晶系,空间群为C2/m[34]。Y与6个氧原子配位形成[YO6]八面体,Si与4个氧原子配位形成[SiO4]四面体。在蓝光激发下,LiYSi2O6∶Cr3+样品的近红外发光极其微弱。同Lu2Si2O7类似,尽管Y3+R = 0.09 nm,CN = 6)提供八面体格位,但其离子半径与Cr3+R = 0.061 5 nm,CN=6)差距较大(ΔR=(RY-RCr)/RY=31.66%),并不利于Cr3+的占位取代。从键长考虑,Y2Si2O7 体系中[YO6]八面体的Y—O键长为0.223~0.230 nm,大于LiScSi2O6体系中的Sc—O键长。Y—O键能较小,较易打破。当Cr3+取代Y3+时,Cr—O键长不稳定。因此,这可能是Cr3+在Y2Si2O7体系中发光微弱的原因。

图 5. (a)LiYSi2O6∶Cr3+样品的XRD图;(b)Y2Si2O7的晶体结构示意图

Fig. 5. (a)XRD pattern of LiYSi2O6∶Cr3+. (b)Crystal structure of Y2Si2O7

下载图片 查看所有图片

3.4 LiGdSi2O6晶体结构

图6(a)为制备得到的LiGdSi2O6∶Cr3+样品的XRD图,其在970 ℃下煅烧10 h。可以看出,样品的XRD衍射峰以LiGdSiO4(PDF#48-0009)物质相为主,以Li2Si3O5物质相为辅。由于LiGdSiO4与Li0.284Sm4.512Si3O12.91结构相同,选择Li0.284Sm4.512-Si3O12.91结构进行讨论。Li0.284Sm4.512Si3O12.91的晶体结构如图6(b)所示,其为六角晶系,空间群为P63/m[35]。Li与6个氧原子配位形成[LiO6]八面体,Si与4个氧原子配位形成[SiO4]四面体,Sm与7个氧原子配位形成[SmO7]五角双锥。在蓝光激发下,LiGdSi2O6∶Cr3+样品的近红外发光极其微弱。考虑Gd3+与Sm3+配位情况相同,Gd3+R = 0.1 nm,CN = 7)的离子半径与Cr3+R = 0.061 5 nm,CN = 6)差距较大(ΔR =(RGd-RCr)/RGd=38.5%),因此不利于Cr3+的占位取代。从键长考虑,[SmO7]中 Sm—O键长为0.224~0.273 nm,[LiO6]八面体中Li—O键长为0.240~0.243 nm,同Lu2Si2O7以及Y2Si2O7结构相类似,其键长的增加不利于Cr3+的占位取代。

图 6. (a)LiGdSi2O6∶Cr3+样品的XRD图;(b)Li0.284Sm4.512Si3-O12.91的晶体结构示意图

Fig. 6. (a)XRD pattern of LiGdSi2O6∶Cr3+. (b)Crystal structure of Li0.284Sm4.512Si3O12.91

下载图片 查看所有图片

4 结论

在现有的固相工艺条件下,我们通过M离子(M = Ga3+,Lu3+,Y3+,Gd3+)取代Sc3+的方式对LiScSi2O6∶Cr3+进行性能调控。结果表明,当M = Ga3+时,生成了LiGaSi2O6和LiGaSiO4两相,发射峰位蓝移,光谱带宽变窄;当M = Lu3+时,LiScSi2O6相减少,Lu2Si2O7相增多,发光减弱;当M = Y3+/Gd3+时,分别生成了Y2Si2O7和LiGaSiO4相,且均有Li2Si3O5相生成,发光微弱。M离子的取代引入了其他杂质或发生了相变,降低了材料的发光性能。主要原因归结于本文中选取的M离子半径不匹配,同时随离子半径增加,核间距离增大,键长增加,键能减小,导致Cr3+的占位不稳定,发光减弱。

本文专家审稿意见及作者回复内容的下载地址:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20230325.

参考文献

[1] FENG X, LIN L T, DUAN R, et al. Transition metal ion activated near-infrared luminescent materials[J]. Prog. Mater. Sci., 2022, 129: 100973.

[2] LIU G C, XIA Z G. Modulation of thermally stable photoluminescence in Cr3+-based near-infrared phosphors[J]. J. Phys. Chem. Lett., 2022, 13(22): 5001-5008.

[3] JIN S L, LI R F, HUANG H, et al. Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites[J]. Light Sci. Appl., 2022, 11(1): 52.

[4] JIN Y, ZHOU Z, RAN R X, et al. Broadband NIR phosphor Ca2LuScAl2Si2O12∶Cr3+ for NIR LED applications[J]. Adv. Opt. Mater., 2022, 10(24): 2202049.

[5] FANG M H, BAO Z, HUANG W T, et al. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes[J]. Chem. Rev., 2022, 122(13): 11474-11513.

[6] 张亮亮, 张家骅, 郝振东, 等. Cr3+掺杂的宽带近红外荧光粉及其研究进展[J]. 发光学报, 2019, 40(12): 1449-1459.

    ZHANG L L, ZHANG J H, HAO Z D, et al. Recent progress on Cr3+ doped broad band NIR phosphors[J]. Chin. J. Lumin., 2019, 40(12): 1449-1459.

[7] ZHAO F Y, SONG Z, LIU Q L. Advances in chromium-activated phosphors for near-infrared light sources[J]. Laser Photonics Rev., 2022, 16(11): 2200380.

[8] 王长建, 乔旭升, 樊先平. 蓝光LED激发Cr3+掺杂宽带近红外荧光粉研究进展[J]. 发光学报, 2022, 43(12): 1855-1870.

    WANG C J, QIAO X S, FAN X P. Research progress on blue LED excited Cr3+ doped phosphors with broad-band near-infrared luminescence[J]. Chin. J. Lumin., 2022, 43(12): 1855-1870.

[9] JIA Z W, YUAN C X, LIU Y F, et al. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources[J]. Light Sci. Appl., 2020, 9(1): 86.

[10] 马子婷, 张先哲, 戴鹏鹏, 等. 宽带近红外荧光粉KScP2O7∶Cr3+的发光特性研究及近红外LED器件应用[J]. 发光学报, 2023, 44(12): 2158-2167.

    MA Z T, ZHANG X Z, DAI P P, et al. Luminescence properties of KScP2O7∶Cr3+ broadband near-infrared phosphor and application of near-infrared LED device[J]. Chin. J. Lumin., 2023, 44(12): 2158-2167.

[11] 温海洋, 张晨杰, 周天亮, 等. Ce3+-Cr3+共掺杂Ba3Sc4O9荧光材料的发光性能[J]. 发光学报, 2023, 44(12): 2149-2157.

    WEN H Y, ZHANG C J, ZHOU T L, et al. Luminescence properties of Ce3+-Cr3+ co-doped Ba3Sc4O9 phosphors[J]. Chin. J. Lumin., 2023, 44(12): 2149-2157.

[12] XU X X, SHAO Q Y, YAO L Q, et al. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications[J]. Chem. Eng. J., 2020, 383: 123108.

[13] LIU G C, MOLOKEEV M S, XIA Z G. Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability[J]. Chem. Mater., 2022, 34(3): 1376-1384.

[14] FANG L M, HAO Z D, ZHANG L L, et al. Cr3+-doped broadband near infrared diopside phosphor for NIR pc-LED[J]. Mater. Res. Bull., 2022, 149: 111725.

[15] LIU T Y, CAI H, MAO N, et al. Efficient near-infrared pyroxene phosphor LiInGe2O6∶Cr3+ for NIR spectroscopy application[J]. J. Am. Ceram. Soc., 2021, 104(9): 4577-4584.

[16] CHEN X H, SONG E H, ZHOU Y Y, et al. Distorted octahedral site occupation-induced high-efficiency broadband near-infrared emission in LiScGe2O6∶Cr3+ phosphor[J]. J. Mater. Chem. C, 2021, 9(39): 13640-13646.

[17] ZHOU X F, GENG W Y, LI J Y, et al. An ultraviolet-visible and near-infrared-responded broadband NIR phosphor and its NIR spectroscopy application[J]. Adv. Opt. Mater., 2020, 8(8): 1902003.

[18] ZHOU W Y, LUO J B, FAN J Q, et al. Luminescent properties and LED application of broadband near-infrared emitting NaInGe2O6∶Cr3+ phosphors[J]. Ceram. Int., 2021, 47(18): 25343-25349.

[19] LIU H Z, ZHAO F Y, CAI H, et al. Consequence of optimal bonding on cation ordering and enhanced near-infrared luminescence in Cr3+-doped pyroxene oxides[J]. J. Mater. Chem. C, 2022, 10(24): 9232-9240.

[20] ZHANG X G, CHEN X, ZHOU C, et al. Spectral engineering and thermometric performance of LiIn(Si2-xGex)O6∶Cr3+ phosphor for multi-mode NIR thermometry[J]. Ceram. Int., 2022, 48(13): 19484-19491.

[21] FANG L M, ZHANG L L, WU H, et al. Efficient broadband near-infrared CaMgGe2O6∶Cr3+ phosphor for pc-LED[J]. Inorg. Chem., 2022, 61(23): 8815-8822.

[22] FAN J Q, ZHOU W Y, ZHANG J L, et al. A novel efficient broadband near-infrared phosphor LiGaGe2O6∶Cr3+ with EQE enhancement and spectral tuning by Sc3+-Ga3+ substitution for NIR pc-LED application[J]. Inorg. Chem. Front., 2023, 10(2): 511-521.

[23] FAN J Q, AI Y C, ZHOU W Y, et al. NIR emission spectral engineering in NaSc(Si, Ge)2O6∶Cr3+ solid-solution phosphors via crystal field regulation[J]. J. Lumin., 2022, 247: 118887.

[24] YAN Y, SHANG M M, HUANG S, et al. Photoluminescence properties of AScSi2O6∶Cr3+ (A = Na and Li) phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources[J]. ACS Appl. Mater. Interfaces, 2022, 14(6): 8179-8190.

[25] YUAN Z M, LI G, ZHOU M H, et al. Synthesis, structure and photoluminescence properties of NIR phosphor LiAlSi2O6∶Cr3+[J]. Opt. Mater., 2022, 134: 113124.

[26] MENG W, CAI P B, FU X Y, et al. An optical thermometry based on near-infrared luminescence of LiGaSiO4∶Cr3+ phosphors excited by red light[J]. J. Lumin., 2022, 252: 119283.

[27] RAJENDRAN V, FANG M H, GUZMAN G N D, et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications[J]. ACS Energy Lett., 2018, 3(11): 2679-2684.

[28] WANG C P, WANG X M, ZHOU Y, et al. An ultra-broadband near-infrared Cr3+-activated gallogermanate Mg3Ga2GeO8 phosphor as light sources for food analysis[J]. ACS Appl. Electron. Mater., 2019, 1(6): 1046-1053.

[29] 黄帅, 颜雨, 尚蒙蒙. Cr掺杂Ca2Ga2GeO7宽带近红外光材料的制备及性能研究 [J/OL]. 聊城大学学报(自然科学版), https://doi.org/10.19728/j.issn1672-6634.2023070005.

    HUANGS, YANY, SHANGM M. J. Preparation and photoluminescence properties of Cr-doped Ca2Ga2GeO7 broadband near-infrared materials [J/OL]. Liaocheng Univ. (Nat. Sci. Ed.),https://doi.org/10.19728/j.issn1672-6634. 2023070005.(in Chinese)

[30] 蔡吉泽, 庞然, 于湛, 等. 近红外发光材料Mg2SnO4∶Cr3+的制备及发光性质[J]. 发光学报, 2019, 40(12): 1505-1513.

    CAI J Z, PANG R, YU Z, et al. Preparation and luminescence properties of near infrared luminescent material Mg2SnO4∶Cr3+[J]. Chin. J. Lumin., 2019, 40(12): 1505-1513.

[31] SOETEBIER F, URLAND W. Crystal structure of lutetium disilicate, Lu2Si2O7[J]. Kristallogr. NCS, 2002, 217: 22.

[32] 吴家宇, 张珍珍, 李松, 等. 孤立格位中的Cr3+近红外发射波长的设计与调控: 以AMP2O7∶Cr3+为例[J]. 发光学报, 2023, 44(2): 246-258.

    WU J Y, ZHANG Z Z, LI S, et al. Design and regulation of near-infrared emission wavelength of Cr3+ in isolated lattice sites: a case study of AMP2O7∶Cr3+[J]. Chin. J. Lumin., 2023, 44(2): 246-258.

[33] LU Z W, LIU Y F, CHEN S Y Z, et al. Improved near-infrared luminescence properties of LiScSi2O6∶Cr3+, Yb3+ phosphors via efficient energy transfer[J]. ACS Appl. Opt. Mater., 2023, 1(6): 1097-1103.

[34] REDHAMMER G J, ROTH G. β-Y2Si2O7, a new thortveitite-type compound, determined at 100 and 280 K[J]. Acta Crystallogr. Sect. C, 2003, 59(10): i103-i106.

[35] SATO M, KONO Y, UEDA H, et al. Bulk and grain boundary ionic conduction in lithium rare earth-silicates “LiLnSiO4” (Ln = La, Nd, Sm, Eu, Gd, Dy)[J]. Solid State Ionics, 1996, 83(3-4): 249-256.

卢紫微, 刘永福, 罗朝华, 孙鹏, 蒋俊. Li(Sc, M)Si2O6∶Cr3+M = Ga3+/Lu3+/Y3+/Gd3+)的近红外发光性能[J]. 发光学报, 2024, 45(3): 407. Ziwei LU, Yongfu LIU, Zhaohua LUO, Peng SUN, Jun JIANG. Near-infrared Luminescence of Li(Sc, M)Si2O6∶Cr3+M = Ga3+/Lu3+/Y3+/Gd3+)[J]. Chinese Journal of Luminescence, 2024, 45(3): 407.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!