红外与激光工程, 2022, 51 (2): 20210878, 网络出版: 2022-03-21  

静电喷印技术在太赫兹超表面制备中的应用

Application of electrostatic jet-print technology in terahertz metasurface devices fabrication
作者单位
1 南京理工大学 电子工程与光电技术学院,江苏 南京 210094
2 江苏集萃深度感知技术研究所有限公司,江苏 无锡 214115
摘要
近年来,太赫兹技术快速发展,基于超表面的太赫兹器件受到广泛关注,并已应用于太赫兹成像、光谱和生物传感等诸多领域。但太赫兹超表面器件的制备复杂且成本高,而静电喷印技术无需掩模版,成本低、精度高且易于在异形曲面上制作。基于静电喷印技术设计和制备了太赫兹吸波器,并利用太赫兹时域光谱系统(THz-TDS)对样品进行了性能测试,实验与仿真结果基本相符,在0.098~0.353 THz频段内吸收大于90%。此外,还设计了太赫兹线极化转换器,在0.167~0.355 THz频段内的极化转换大于95%,相对带宽约72%,并分析了所设计样品的制备工艺条件,验证了静电喷印技术对于制备太赫兹极化转换器的可行性。研究成果表明,静电喷印技术在太赫兹超表面器件的制备中具有广泛的应用前景。
Abstract
In recent years, terahertz technology has been developed rapidly, and terahertz devices based on metasurfaces have received widespread attention and have been applicated in many areas, including terahertz imaging, spectroscopy, biosensing, and so on. However, the fabrication of the terahertz metasurface devices is complex and costly, while electrostatic jet-print technology has the advantages of mask-free, low cost, high precision, and special-shaped curved surface conformability. In this work, a terahertz absorber based on the electrostatic jet-print technology was designed and fabricated, and characterized by using a reflective terahertz time-domain spectrometer (THz-TDS). The result shows an absorption rate greater than 90% in the range of 0.098-0.353 THz, which is basically consistent with the simulation result. In addition, a terahertz polarization converter was also designed. The conversion efficiency in the range of 0.167-0.355 THz is greater than 95%, while the relative bandwidth is about 72%. The fabrication process conditions of the designed terahertz polarization converter was then analyzed, and the electrostatic jet-print technology was verified to be a promising fabrication method. The research results show that the electrostatic jet-print technology has broad application prospects in the fabrication of terahertz metasurface devices.

0 引 言

太赫兹波即频率在0.1~10 THz的电磁波[1],位于微波和红外辐射之间,具有穿透性好、波长短和谱信息丰富等特征[2]。故太赫兹器件在医学成像、宽带通信、雷达探测和无损检测等领域应用广泛[3-4]。超表面是一种亚波长的二维平面结构。通过调整单元结构,可对电磁波振幅、相位和偏振进行调控[5]。在太赫兹波段下超表面具有优异的可调谐性质,可做成吸波器、极化转换器和传感器等太赫兹器件[6]

目前,太赫兹器件的主流制造技术包括光刻、纳米压印和喷墨印刷等[7-9]。然而,这些技术在应用推广上仍然存在一些难题,如:光刻的长宽比低,纳米压印的制造尺寸小,喷墨印刷的打印分辨率低。因此,寻求一种设备成本低、流程简单、分辨率高的太赫兹器件制备方法成为近年的关注焦点。而基于电流体动力学(Electrohydrodynamics, EHD)原理的静电喷印技术是一种新型的无掩模印刷电子工艺,可将纳米导电颗粒墨水喷印到各类基底上,经过简单的热退火工艺形成高精度的导电图形。制备方法灵活方便,不仅减少了传统工艺中打印超细结构的难度,且成本低,精度高,便于在异形曲面上制作。因此,静电喷印技术在超表面结构的设计中,尤其针对柔性异形表面具有巨大优势。

笔者课题组将静电喷印技术应用于超表面太赫兹吸波器和极化转换器的设计与制备中。在太赫兹吸波器的设计中,采用银有损渔网结构作为吸波器的基本功能结构,利用CST(Dassault Systemes 公司1.0.0版本)进行全波仿真验证。利用等效电路模型对超表面结构进行优化,并采用自制的静电喷印系统制备宽带吸波器样品。此外,还设计并分析了太赫兹极化转换器的制备工艺条件。通过对比样品的测试结果与仿真结果,验证了静电喷印技术在太赫兹器件制备中的可靠应用。

1 静电喷印技术

静电喷印技术通过产生泰勒锥来实现直径比喷口尺寸小两个数量级的射流,实现在任意曲面上喷印,是一种低成本、高精度的印刷电子工艺,特别适用于微米级导电图案的设计与制备,且在柔性异形曲面基底上的应用优势尤为突出。

笔者课题组自制的静电喷印系统主要包括喷嘴、高压直流电源、液体供应注射泵和绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor, IGBT)驱动模块。如图1(a)所示,喷嘴固定在xyz三维高精度运动平台上,其运动轨迹由计算机控制,运动状态由激光测距仪控制。用注射器将纳米颗粒油墨(由中国科学院化学研究所提供)注射至喷嘴中,用精密注射泵控制其流量,用直流高压源在喷嘴和基板间施加近千伏的高压以产生微米级射流,实现高精度打印。整个喷流过程由电荷耦合元件(Charge-coupled Device, CCD)摄像机实时监控。

图 1. 自主研发的基于EHD原理的静电喷印系统的 (a) 示意图及(b) 实物图

Fig. 1. (a) Schematic diagram and (b) optical picture of the home-made electrostatic jet printing system based on EHD principle

下载图片 查看所有图片

文中系统采用IGBT快速开关系统的基本工作原理。当IGBT处于“ON”状态时,其电阻相对较低,约20 Ω,此时,Vns变为低电平,不能形成泰勒锥,液体射流便处于“OFF”状态。反之,当IGBT处于“OFF”状态时,其电阻高达20 MΩ,相应的Vns处于高电平,从而形成泰勒锥,液体射流处于“ON”状态,能够进行喷印工作。图2展示了内径为500 μm的喷口处通过泰勒锥形成直径仅4.4 μm的射流,射流的直径可通过直流电压动态调节。

图 2. 开口直径为500 μm的喷嘴形成直径为4.4 μm的射流 (图中比例尺为300 μm)

Fig. 2. Picture of a nozzle with an internal diameter of 500 μm producing a jet with the diameter of 4.4 μm (Scale bar is 300 μm)

下载图片 查看所有图片

由于IGBT绝缘电压高,响应时间短,故开关精确可靠。开关系统的时间分辨率可低至2 ms,对应打印最小步长约200 μm,故打印模式精确可控,原则上可直接喷印出任何复杂图案。

自制的静电喷印系统制备样品流程为:首先设计图案,由仿真结果确定制备图案并对喷嘴运动路径编程;其次设置合适的电压、喷嘴高度和运动速率等参数,即可在不同基底上直接印刷图案;最后将样品置于退火炉中进行热退火,即可形成高精度的导电图形。

笔者课题组自制的静电喷印系统可达到10 μm以下的印刷线宽精度,如图3所示,在玻璃基底上喷印线宽约5 μm的透明金属网格样品的透光率达90%,且能打印出如图4的复杂图案。

图 3. (a) 玻璃基底上线宽约5 μm的透明金属网格样品 (图中比例尺分别为200 μm,50 μm );(b) 样品的可见光透射光谱图

Fig. 3. (a) A transparent metal grid sample with the line width of about 5 μm on a glass substrate (the scale bar is 200 μm and 50 μm); (b) Visible light transmission spectrum of the sample

下载图片 查看所有图片

图 4. 在玻璃基底上打印出的带断续点复杂图案(图中比例尺为5 mm)

Fig. 4. Complex patterns with discontinuous points printed on the glass substrate (Scale bar is 5 mm)

下载图片 查看所有图片

2 静电喷印技术在太赫兹器件中的应用

2.1 太赫兹吸波器

宽带吸波器在信号屏蔽、雷达隐身和微波探测等民用或**领域有着广泛应用。而一些光学视窗的应用如飞行器、车辆和导引头天线罩等在电磁吸波的基础上,对于可见光透过以及复杂异形表面共形有着较高的需求,因此宽带透明柔性电磁吸波器的设计与制备具有重要的实用价值。

笔者课题组设计了如图5(a)所示的多层太赫兹宽带吸波器结构,并制备了样品。上层导电层采用银有损渔网超表面结构,中层导电层和底层导电层为光学透明导电材料氧化铟锡(Indium Tin Oxide,ITO)薄膜,中层ITO表面电阻为200 Ω/sq(厚度为(23±5) nm),底层ITO表面电阻为8 Ω/sq(厚度为(185±5) nm)。采用聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)作导电层间的介电材料,其介电常数为3,具有良好的光学透过性和机械柔性。此外,为对超表面结构进行水氧隔绝,在印刷的银栅格上方覆盖了一层厚度d0=50 μm的PET薄层。

图 5. 多层太赫兹吸波器的 (a) 结构示意图及 (b) 等效电路模型

Fig. 5. Schematic of (a) structure and (b) equivalent circuit model of the multilayer terahertz absorber

下载图片 查看所有图片

利用CST对所设计的多层太赫兹宽带吸波器进行吸波效能仿真,结果如图6所示,在0.098~0.353 THz频率范围内的吸收大于90%。

图 6. 仿真、等效电路模型计算和实验测量得到的吸收曲线

Fig. 6. Absorption curves obtained by simulation, equivalent circuit calculation, and experimental results

下载图片 查看所有图片

同时,还利用ADS(Keysight Technologies 公司5.1.0.0版本)对太赫兹吸波器的等效电路进行仿真与拟合,从而获得器件的集总电路参数,等效电路如图5(b)所示。在0.098~0.353 THz频率范围内的S11< −10 dB时,对太赫兹吸波器的物理参数进行优化设计,如表1所示。进而采用静电喷印系统制备多层太赫兹吸波器样品,如图7所示,样品被覆盖在一张印有“NJUST”的白纸上,以展示其高光学透明度。

表 1. 太赫兹吸波器的优化参数

Table 1. Optimized parameters of the terahertz absorber

ParameterValue
d1/μm 175
d2/μm 175
p/μm 400
2a/μm 20
Rs/Ω·sq−150
h_Ag/μm 1

查看所有表

图 7. 显示吸收器光学透明度的照片(图中比例尺为400 μm)

Fig. 7. Picture of the terahertz absorber sample indicating the good optical transparency (Scale bar is 400 μm)

下载图片 查看所有图片

由于底层ITO可作为完美导电体,太赫兹辐射几乎不能穿透,总透射率几乎为0,故测量样品的反射率即能得到样品的吸收特性。利用反射太赫兹时域光谱仪进行实际测量,以抛光铝反射镜作为反射基准,对比待测样品和铝反射镜的反射光谱,得到样品在太赫兹波段的光谱反射率。

$ {{A}}(\omega )=1-{{R}}(\omega)-{{T}}(\omega) $ (1)

式中:A(ω)、R(ω)、T(ω) 分别表示太赫兹能量的吸收、反射和透射。根据公式(1)计算得到吸收曲线如图6所示,实验测量结果与仿真结果以及理论计算曲线吻合度较好。

可见,静电喷印技术可充分满足制备太赫兹吸波器的工艺需求。

2.2 太赫兹极化转换器

极化转换器是一种改变入射波极化状态的器件,根据极化状态分为线极化、圆极化和线-圆、圆-线极化转换;根据电磁波传输路径,分为透射型和反射型极化转换器。

基于单层条带结构设计了如图8所示的太赫兹波段的反射型线极化转换器,由三层组成:顶层是面电阻为1 Ω/sq的矩形条带金属,中间介电层是介电常数为6的玻璃,底层是面电阻为8 Ω/sq的ITO薄膜。用CST对其进行仿真优化,优化后的几何参数为:p=350 μm,h=110 μm,a=320 μm,b=50 μm,θ=45°。

图 8. 太赫兹极化转换器的 (a) 单元结构示意图及 (b) 单元结构俯视图

Fig. 8. Schematic of (a) unit structure and (b) the top schematic view of a terahertz polarization converter

下载图片 查看所有图片

图9(a)展示了共极化反射系数rxx和交叉极化反射系数ryx,从图中可以看出,在0.16~0.34 THz频率范围内交叉极化反射系数ryx>−3 dB,共极化反射系数rxx<−10 dB。

图 9. 太赫兹极化转换器的 (a) 交叉极化和共极化反射系数及 (b) 极化转换率

Fig. 9. (a) Co- and cross-polarized reflectance and (b) polarization conversion rate of the terahertz polarization converter

下载图片 查看所有图片

$ {{PCR}} = {{r}}_{{{yx}}}^2/({{r}}_{{{yx}}}^2 + {{r}}_{{{xx}}}^2) $ (2)

根据公式(2)计算x偏振入射时的极化转换曲线如图9(b)所示。在0.167~0.355 THz频率范围内实现了高效率的线极化波的相互转换,带内极化转换高于95%,相对带宽达72% (PCR>95%)。能有效将入射线极化波的极化方向旋转 90°,即能够将沿x(或y)方向极化的入射电磁波经超表面反射后转换为沿y(或x)方向极化的电磁波。

由于所设计的极化转换器的超表面图形为最小线宽50 μm的非连续性结构,现有的自制静电喷印系统基于高精度通断控制,可充分满足该图形的制备工艺需求,故该极化转换器同样可采用静电喷印技术来制备。

3 结 论

针对太赫兹超表面器件制备存在的流程复杂、成本高和精度低等难题,笔者课题组基于EHD原理自制了一个静电喷印系统,具有微米级的打印线宽及精度,适用于微纳米器件制备。利用静电喷印技术在柔性和透明基板上制备了基于超表面的太赫兹宽带吸波器,在0.098~0.353 THz范围内吸收大于90%,实验测量和仿真结果基本一致,且制备的样品具有高柔性度和高透明度等优点。此外,还设计了基于超表面的太赫兹反射型线极化转换器,在0.167~0.355 THz范围内的线极化转换大于95%,相对带宽约72%,分析了所设计样品的制备工艺条件和可行性。综上所述,静电喷印技术可充分满足太赫兹超表面器件的制备工艺需求,具有巨大的技术优势和应用潜力。尤其对于异形曲面上的器件制备,静电喷印技术有望实现在任意曲面上快速、高精度地制备样品。

参考文献

[1] He Jingwen, Dong Tao, Zhang Yan. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared and Laser Engineering, 2020, 49(9): 20201033.

[2] Zhu Hailiang, Wang Kai, Qiu Yuwei, , et al. A review of terahertz metamaterials and applications[J]. Journal of Telemetry, Tracking and Command, 2021, 42(4): 18-35.

[3] Wang Jin, Tian Hao. Terahertz flexible stretchable metasurface based on double resonance response[J]. Infrared and Laser Engineering, 2020, 49(12): 20201059.

[4] Guo Lihan, Wang Xinke, Zhang Yan. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611-615.

[5] Li Tianyou, Huang Linlin, Wang Yongtian. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5): 523-540, 701.

[6] Wang Hua, Sun Xiaohong, Wang Zhen, , et al. Characteristic analysis of metamaterial absorber in terahertz wavelength[J]. Infrared and Laser Engineering, 2016, 45(12): 1225003.

[7] Wu Yanghui, Deng Yuqiang, Wang Junjie, , et al. THz broadband absorber fabricated by EHD printing technology with high error tolerance[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(6): 637-642.

[8] Fu Rao, Li Zile, Zheng Guoxing. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899.

[9] Chen Hong, Li Hongtao, Han Yanjun, , et al. Near-infrared beam deflector with broadband and large deflection angle based on dielectric metasurface[J]. Optics and Precision Engineering, 2020, 28(9): 1873-1880.

封春节, 朱晓波, 吴杨慧, 傅晨, 常惠玉, 岳玉涛, 顾文华. 静电喷印技术在太赫兹超表面制备中的应用[J]. 红外与激光工程, 2022, 51(2): 20210878. Chunjie Feng, Xiaobo Zhu, Yanghui Wu, Chen Fu, Huiyu Chang, Yutao Yue, Wenhua Gu. Application of electrostatic jet-print technology in terahertz metasurface devices fabrication[J]. Infrared and Laser Engineering, 2022, 51(2): 20210878.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!