光子学报, 2018, 47 (4): 0423003, 网络出版: 2018-03-15   

基于表面等离子激元的口径耦合多功能非对称半圆腔滤波器设计

Design of the Aperture Coupled Multi-functional Asymmetric Semi-circular Cavity Filter Based on Surface Plasmon Polaritons
作者单位
兰州大学 信息科学与工程学院 现代通信技术研究所, 兰州 730000
摘要
采用口径耦合的方法构造了一种金属-介质-金属非对称结构滤波器, 由两个半圆腔通过两个矩形口径与波导管相连形成.运用有限元法仿真计算获得了该结构的磁场、透射谱、带宽及边沿陡峭度分布曲线.研究结果表明, 通过调节结构参数, 滤波器的透射曲线出现明显的红移或蓝移现象, 且曲线分布平滑, 其通带透射比高达0.95, 阻带则具有平坦特性且透射比低至0.001, 通带、阻带均具有较宽的带宽.对滤波器进行结构参数优化, 可以实现类似矩形滤波器的特性, 在光通信波段的三个通信窗口能够实现通道选择的滤波功能.该滤波器在微纳光学器件集成尤其是光通信系统中有良好的应用前景.
Abstract
A metal-insulator-metal asymmetric structure filter is proposed based on the aperture coupled method, which is composed of two semi-circular cavities, a waveguide and two rectangular apertures connecting the semi-circular cavities and the waveguide. The finite element method is used to simulate and calculate its magnetic field distribution, transmission spectra, bandwidth and edge steepness distribution curves. The results show that the obvious red shift or blue shift phenomenon will be occurred in the transmission curve when the structure parameters are adjusted, and the transmission curve is very smooth. Its pass-band’s transmittance can reach 0.95, its stop-band has the flat characteristics and the transmittance is as low as 0.001. Besides, its pass-band and stop-band all have a wide bandwidth. After optimizing the structure parameters, the filter can realize a similar function of the rectangular filter and the filtering function of channel selection of the three optical communication windows at telecommunication regime. The proposed filter can be well applied in the micro / nano optical integrated devices, especially in optical communication systems.
参考文献

[1] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[2] OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[3] GRAMOTNEY D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[4] YUN Bin-feng, HU Guo-hua, CUI Yi-ping.Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide[J]. Journal of Physics D Applied Physics, 2010, 43(38): 385102.

[5] BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.

[6] FENG Jing, PACIFICI D. A spectroscopic refractometer based on plasmonic interferometry[J]. Journal of Applied Physics, 2016, 119(8): 083104.

[7] LIU J S, PALA R A, AFSHINMANESH F,et al. A submicron plasmonic dichroic splitter[J]. Nature Communications, 2011, 2(1): 525-530.

[8] VERONIS G, FAN S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J].Applied Physics Letters, 2005, 87(13): 131102.

[9] YU Yue, SUN Chen, LI Jun-hao, et al. A plasmonic metal grating wavelength splitter[J]. Journal of Physics D Applied Physics, 2014, 48(1): 015102.

[10] 石悦, 张冠茂, 安厚霖,等. 基于耦合开口方环共振空腔的可控法诺共振研究[J]. 光子学报, 2017, 46(4): 0413002.

    SHI Yue, ZHANG Guan-mao, AN Hou-lin,et al. Controllable Fano resonance based on coupled square split-ring resonance cavity[J]. Acta Photonica Sinica, 2017, 46(4): 0413002.

[11] HAJEBIFARD A, BERINI P. Fano resonances in plasmonic heptamer nano-hole arrays[J]. Optics Express, 2017, 25(16): 18566-18580.

[12] KRASAVIN A V, ZAYATS A V. Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides[J]. Applied Physics Letters, 2010, 97(4): 241106.

[13] ATALLA M R M, FARYAD M, LAKHTAKIA A. On surface-plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile. Part II: high-phase-speed solutions[J]. Journal of the Optical Society of America B, 2017, 29(11): 3078-3086.

[14] 钟晓岚. 金属-绝缘体-金属布喇格反射腔的窄带滤波研究[J]. 光子学报, 2011, 40(4): 537-541.

    ZHONG Xiao-lan. A narrow-band subwavelength plasmonic waveguide filter with metal-insulator-metal Bragg reflector[J]. Acta Photonica Sinica , 2011, 40(4): 537-541.

[15] LI Hong-ju, WANG Ling- ling, ZHANG Han,et al. Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter[J]. Applied Physics Express, 2014, 7(2): 343-352.

[16] WANG Tong-biao, WEN Xie-wen, YIN Cheng-ping, et al. The transmission characteristics of surface plasmon polaritons in ring resonator. [J]. Optics Expres, 2009, 17(26): 24096-24101.

[17] WANG Guo-xi, LU Hua, LIU Xue-ming,et al. Tunable multi-channel wavelength demultiplexer based on mim plasmonic nanodisk resonators at telecommunication regime[J]. Optics Express, 2011, 19(4): 3513-3518.

[18] ZHANG Zhao, SHI Feng-hua, CHEN Yi-hang. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 2015, 10(1): 139-144.

[19] SONG Ci, QU Shi-nian, WANG Ji-cheng,et al. Plasmonic tunable filter based on trapezoid resonator waveguide[J]. Journal of Modern Optics, 2015, 62(17): 1400-1404.

[20] YUN Bin-feng, HU Guo-hua, CUI Yi-ping. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity[J].Plasmonics, 2013, 8(2): 267-275.

[21] XIAO San-shui, LIU Liu, QIU Min. Resonator channel drop filters in a plasmon-polaritons metal[J]. Optics Express, 2006, 14(7): 2932-2937.

[22] HAN Z, VAN V, HERMAN W N,et al. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes[J]. Optics Express, 2009, 17(15): 12678-12684.

[23] PENG Xiao, LI Hong-jian, WU Cai-ni, et al. Research on transmission characteristics of aperture-coupled square-ring resonator based filter[J]. Optics Communications, 2013, 294(5): 368-371.

[24] HAN Zhang-hua, BOZHEVOLNYI S I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices[J]. Optics Express, 2011, 19(4): 3251-3257.

[25] GUO Ying-hui, YAN Lian-shan, PAN Wei, et al. Transmission characteristics of the aperture-coupled rectangular resonators based on metal-insulator-metal waveguides[J]. Optics Communications, 2013, 300(14): 277-281.

[26] HAN Z, FORSBERG E, HE S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides[J]. IEEE Photonics Technology Letters, 2007, 19(2): 91-93.

[27] GUO Ying-hui, YAN Lian-shan, PAN Wei,et al. Characteristics of plasmonic filters with a notch located along rectangular resonators[J]. Plasmonics, 2013, 8(2): 167-171.

[28] TAO Jin, HUANG Xu-guang, ZHU Jia-hu. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators[J]. Optics Express, 2010, 18(11): 11111-11116.

[29] CHEN Xi, ZHANG Ru, LANG Pei-lin,et al. Transmittance spectrum of surface plasmon polariton based filter with asymmetric double-ring resonator and switch[J]. Journal of Modern Optics, 2014, 61(9): 716-720.

王志爽, 张冠茂, 刘海瑞, 乔利涛. 基于表面等离子激元的口径耦合多功能非对称半圆腔滤波器设计[J]. 光子学报, 2018, 47(4): 0423003. WANG Zhi-shuang, ZHANG Guan-mao, LIU Hai-rui, QIAO Li-tao. Design of the Aperture Coupled Multi-functional Asymmetric Semi-circular Cavity Filter Based on Surface Plasmon Polaritons[J]. ACTA PHOTONICA SINICA, 2018, 47(4): 0423003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!