电光与控制, 2019, 26 (7): 20, 网络出版: 2021-01-06  

转速饱和的四旋翼飞行器偏航姿态自抗扰控制

Active Disturbance Rejection Control of Yaw Attitude of Quadrotor with Speed Saturation
作者单位
天津工业大学电气工程与自动化学院, 天津 300387
摘要
Qball2四旋翼飞行器偏航角的转动由反扭力提供,相较由升力提供动力的俯仰角和滚转角来说更容易出现转速饱和的情况,并且模型具有参数不确定、强耦合、易受外部干扰等特点。针对上述问题采用一种基于误差补偿的线性自抗扰控制(LADRC)算法对偏航姿态进行控制,LADRC算法具有不基于模型、抗扰能力强、参数整定简单等优点。基于误差补偿的抗饱和方案结构简单、灵活度高、抗饱和性能好。仿真和Qball2平台实验结果表明:所设计的控制器能较好地解决偏航角转速饱和的问题,提高了系统的动态性能和稳态性能。
Abstract
The rotation of the Qball2 quadrotor yaw angle is provided by the reverse torsion, which is more prone to the speed saturation than the pitch and roll angles powered by the lift, and the model has the features of parameter uncertainty, strong coupling, and is susceptible to external interference. To solve the above problems, a Linear Active Disturbance Rejection Control (LADRC) algorithm based on error compensation is used to control the yaw attitude. The LADRC algorithm has the advantages of not based on model, strong anti-interference ability and simple parameter setting. The anti-saturation scheme based on error compensation has a simple structure, high flexibility and good anti-saturation performance. The simulation and Qball2 platform experimental results show that the designed controller can better solve the problem of yaw angle speed saturation and improve the dynamic performance and steady state performance of the system.
参考文献

[1] 聂博文, 马宏绪, 王剑, 等. 微小型四旋翼飞行器的研究现状与关键技术[J]. 电光与控制, 2007, 14(6): 113-117.

[2] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510.

[3] 彭程, 白越, 乔冠宇, 等. 四旋翼无人机的偏航抗饱和与多模式PID控制[J]. 机器人, 2015, 37(4): 415-423.

[4] 魏青铜, 陈谋, 吴庆宪. 输入饱和与姿态受限的四旋翼无人机反步姿态控制[J]. 控制理论与应用,2015, 32(10): 1361-1369.

[5] 王帅, 邓永停, 朱娟. 地基大口径望远镜伺服系统的抗扰动设计[J]. 光学精密工程, 2017, 25(10): 2627-2635.http://opticsjournal.net/Articles/Abstract?aid=OJ171124000176TpVsYu

[6] 韩京清, 王伟. 非线性跟踪─微分器[J]. 系统科学与数学,1994,14(2): 177-183.

[7] DOYLE J C, SMITH R S, ENNS D F. Control of plants with input saturation nonlinearities[C]//Proceedings of American Control Conference, Mineapolis:IEEE Press, 1987: 1024-1029.

[8] 周宏, 谭文. 线性自抗扰控制的抗饱和补偿措施[J]. 控制理论与应用, 2014, 31(11): 1457-1463.

[9] 安哲. 基于视觉的Qball-X4四旋翼无人机地面目标跟踪[D]. 沈阳:东北大学, 2014.

[10] BOUABDALLAH S, SIEGWART R. Backstepping and slid-ing mode techniques applied to an indoor micro quadrotor[C]//IEEE International Conference on Robotics & Automation,2005: 2247-2252.

[11] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference, IEEE, 2003: 4989-4996.

[12] 杨晟萱. 四旋翼飞行器自抗扰控制方法研究[D]. 大连: 大连理工大学, 2014.

[13] 刘一莎, 杨晟萱, 王伟. 四旋翼飞行器的自抗扰飞行控制方法[J].控制理论与应用, 2015, 32(10): 1351-1360.

[14] 李海生, 朱学峰. 自抗扰控制器参数整定与优化方法研究[J]. 控制工程, 2004, 11(5): 419-423.

汤帅, 陈奕梅. 转速饱和的四旋翼飞行器偏航姿态自抗扰控制[J]. 电光与控制, 2019, 26(7): 20. TANG Shuai, CHEN Yimei. Active Disturbance Rejection Control of Yaw Attitude of Quadrotor with Speed Saturation[J]. Electronics Optics & Control, 2019, 26(7): 20.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!