压电与声光, 2023, 45 (5): 667, 网络出版: 2024-01-06  

高频声表面波液滴雾化器设计与实验研究

Design and Experimental Study on High-Frequency Surface Acoustic Wave Droplet Atomizer
作者单位
1 厦门理工学院 机械与汽车工程学院,福建 厦门361024
2 精密驱动与传动福建省高校重点实验室(厦门理工学院),福建 厦门361024
3 厦门市智能制造高端装备研究重点实验室,福建 厦门361024
4 集美大学 海洋装备与机械工程学院,福建 厦门361024
摘要
针对现有的雾化装置粒径分散较广及难以生成大量微米级与亚微米级液滴等问题,设计并加工了一种基于声表面波的液滴雾化装置。首先,利用COMSOL仿真软件对声表面波器件的结构建模并进行压电仿真分析,模拟声表面波的振动传播,得到其谐振频率为18.269 MHz。其次,基于声-压电耦合多物理场模拟声波在固-液界面的衍射,以及在液体中的传播过程。最后,加工声表面波雾化实验装置并进行液滴雾化实验,通过调整激励信号频率与输入功率实现了液滴的稳定雾化,对雾化后的液滴粒径分布进行测试。实验结果表明,当输入信号幅值为420 mV,谐振频率为19.259 MHz时,该装置生成大量微米级细小液滴,液滴粒径基本呈三峰分布,主要集中在3 μm、30 μm与500 μm。
Abstract
A liquid droplet atomization device based on surface acoustic waves was designed and fabricated to address the issues of high energy loss, wide particle size distribution, and difficulty in generating large quantities of micro- and submicron-sized droplets using current atomization devices. First, the structure of the surface acoustic wave device was modeled using COMSOL simulation software and subjected to piezoelectric simulation analysis, simulating the vibration propagation of the surface acoustic wave and obtaining a resonant frequency of 18.269 MHz. Second, based on the acoustic-piezoelectric coupling multiphysics field, the diffraction of sound waves at the solid-liquid interface and the propagation of sound waves in the liquid were simulated. Finally, a surface acoustic wave atomization experimental device was fabricated to perform liquid droplet atomization experiments. By adjusting the excitation signal frequency and input power, stable atomization of droplets is achieved, and the droplet size distribution after atomization is tested. The experimental results showed that under the conditions of an input signal amplitude of 420 mV and a resonant frequency of 19.259 MHz, the device generated a large number of small micron-sized droplets with a droplet size distribution showing three peaks mainly concentrated at 3 μm, 30 μm, and 500 μm.
参考文献

[1] HINTERBICHLER H,STEINER H,BRENN G.Self-similar pressure-atomized sprays[J].Journal of Fluid Mechanics,2020,889:A17.

[2] FELIS F,TOMAS S,VALLET A,et al.Experimental analysis of the flow characteristics of a pressure-atomised spray[J].International Journal of Heat and Fluid Flow,2020,85:108624.

[3] MARC O W,HEIKE P K,VOLKER G.Pneumatic atomization:Beam-steering correction in laser diffraction measurements of spray droplet size distributions[J].Applied Sciences,2018,8(10):1738.

[4] LI G,CHEN L,LI L,et al.Modeling and experimental validation of the atomization efficiency of a rotary atomizer for aerial spraying[J].Agronomy,2022,12(2):419.

[5] 胡方军.微泵型压电超声波雾化器研究[D].南京:南京航空航天大学,2013.

[6] SOMA T,KATAYAMA T,TANIMOTO J,et al.Liquid film flow on a high speed rotary bell-cup atomizer[J].InternationalJournal of Multiphase Flow,2015,70:96-103.

[7] MESCHER A,WALZEL P.Rotary atomizer for large drops with narrow size distribution for application in small scale spray dryers[J].Chemie-Ingenieur-Technik:Verfahrenstechnik Technische Chemie Apparatewesen Biotechnologie,2016,88(5):631-639.

[8] PIZZIOL B,COSTA M,PANAO M O,et al.Multiple impinging jet air-assisted atomization[J].Experimental Thermal and Fluid Science,2018,96:303-310.

[9] MONTGOMERY A B,VALLANCE S,ABUAN T.A randomized double-blind placebo-controlled dose-escalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the pari investigational eflow inline nebulizer system in mechanically ventilated patients[J].Journal of Aerosol Medicine and Pulmonary Drug Delivery,2014,27(6):441-448.

[10] KUDO T,SEKIGUCHI K,SANKODA K,et al.Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization[J].Ultrasonics Sonochemistry,2017,37:16-22.

[11] 汪骏雄.基于SAW的微流体雾化机理与实验研究[D].哈尔滨:哈尔滨工业大学,2016.

[12] WINKLER A,HARAZIM S M,MENZEL S B,et al.SAW-based fluid atomization using mass-producible chip devices[J].Lab on a Chip,2015,15(18):3793-37.

[13] CASTRO J O,RAMESAN S,REZK A R,et al.Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting[J].Soft Matter,2018,14(28):5721-5727.

[14] YABE A,HAMATE Y,HARA M,et al.A self-converging atomized mist spray device using surface acoustic wave[J].Microfluidics and Nanofluidics,2014,17:701-710.

[15] 张炎炎.基于声表面波技术的粒子分选微流控芯片设计与实验研究[D].长春:吉林大学,2018.

[16] HUANG Q Y,LE Y,HU H,et al.Experimental research on surface acoustic wave microfluidic atomization for drug delivery[J].Scientific Reports,2022,12(1):1-17.

舒霞云, 陈赛, 常雪峰, 欧阳丽. 高频声表面波液滴雾化器设计与实验研究[J]. 压电与声光, 2023, 45(5): 667. SHU Xiayun, CHEN Sai, CHANG Xuefeng4, OUYANG Li. Design and Experimental Study on High-Frequency Surface Acoustic Wave Droplet Atomizer[J]. Piezoelectrics & Acoustooptics, 2023, 45(5): 667.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!