Journal of Innovative Optical Health Sciences, 2023, 16 (5): 2330001, Published Online: Sep. 26, 2023  

Photoacoustic microscopy based on transparent piezoelectric ultrasound transducers

Author Affiliations
1 State Key Laboratory of Precision Electronics Manufacturing, Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2 Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology, Normal University Nanchang 330038, China
Abstract
Photoacoustic microscopy (PAM), due to its deep penetration depth and high contrast, is playing an increasingly important role in biomedical imaging. PAM imaging systems equipped with conventional ultrasound transducers have demonstrated excellent imaging performance. However, these opaque ultrasonic transducers bring some constraints to the further development and application of PAM, such as complex optical path, bulky size, and difficult to integrate with other modalities. To overcome these problems, ultrasonic transducers with high optical transparency have appeared. At present, transparent ultrasonic transducers are divided into optical-based and acoustic-based sensors. In this paper, we mainly describe the acoustic-based piezoelectric transparent transducers in detail, of which the research advances in PAM applications are reviewed. In addition, the potential challenges and developments of transparent transducers in PAM are also demonstrated.
References

[1] SchellenbergM. W.,HuntH. K., “Hand-held optoacoustic imaging: A review,” Photoacoustics11, 14–27 (2018).

[2] YaoJ.,WangL. V., “Photoacoustic microscopy,” Laser Photon. Rev.7, 758–778 (2013).

[3] LiL.,WangL. V., “Recent advances in photoacoustic tomography,” BME Front.2021, 1–17 (2021).

[4] TianC.,QianW.,ShaoX.,XieZ.,ChengX.,LiuS.,ChengQ.,LiuB.,WangX., “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv. Sci.3, 1600237 (2016).

[5] HuS.,WangL. V., “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15, 11101 (2010).

[6] FavazzaC. P.,JassimO.,CorneliusL. A.,WangL. V., “In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus,” J. Biomed. Opt.16, 16015 (2011).

[7] RichL. J.,SeshadriM., “Photoacoustic Imaging of vascular hemodynamics: Validation with blood oxygenation level–dependent MR imaging,” Radiology275, 110–118 (2014).

[8] LauferJ.,JohnsonP.,ZhangE.,TreebyB.,CoxB.,PedleyB.,BeardP., “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17, 56016 (2012).

[9] StrohmE. M.,MooreM. J.,KoliosM. C., “Single cell photoacoustic microscopy: A review,” IEEE J. Sel. Top. Quant.22, 137–151 (2016).

[10] XieZ.,JiaoS.,ZhangH. F.,PuliafitoC. A., “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34, 1771–1773 (2009).

[11] RaoB.,MaslovK.,DanielliA.,ChenR.,ShungK. K.,ZhouQ.,WangL. V., “Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution,” Opt. Lett.36, 1137–1139 (2011).

[12] JinT.,GuoH.,JiangH.,KeB.,XiL., “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett.42, 4434–4437 (2017).

[13] KimJ. Y.,LeeC.,ParkK.,LimG.,KimC., “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep.-UK5, 7932 (2015).

[14] ChenQ.,GuoH.,JinT.,QiW.,XieH.,XiL., “Ultracompact high-resolution photoacoustic microscopy,” Opt. Lett.43, 1615–1618 (2018).

[15] MaslovK.,StoicaG.,WangL. V., “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30, 625–627 (2005).

[16] WangH.,YangX.,LiuY.,JiangB.,LuoQ., “Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective,” Opt. Exp.21, 24210 (2013).

[17] EstradaH.,TurnerJ.,KneippM.,RazanskyD., “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution,” Laser Phys. Lett.11, 45601 (2014).

[18] ChenZ.,YangS.,XingD., “In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy,” Opt. Lett.37, 3414–3416 (2012).

[19] WangL.,MaslovK.,WangL. V., “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci.110, 5759–5764 (2013).

[20] HuS.,YanP.,MaslovK.,LeeJ.,WangL. V., “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett.34, 3899 (2009).

[21] HuS.,MaslovK.,WangL. V., “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36, 1134–1136 (2011).

[22] YaoJ.,WangL.,LiC.,ZhangC.,WangL. V., “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett.112, 14302 (2014).

[23] YaoJ.,WangL.,YangJ.,MaslovK. I.,WongT. T. W.,LiL.,HuangC.,ZouJ.,WangL. V., “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Meth.12, 407–410 (2015).

[24] LanB.,LiuW.,WangY.,ShiJ.,LiY.,XuS.,ShengH.,ZhouQ.,ZouJ.,HoffmannU.,YangW.,YaoJ., “High-speed widefield photoacoustic microscopy of small-animal hemodynamics,” Biomed. Opt. Exp.9, 4689 (2018).

[25] RaoB.,LiL.,MaslovK.,WangL., “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett.35, 1521–1523 (2010).

[26] LiH.,DongB.,ZhangX.,ShuX.,ChenX.,HaiR.,CzaplewskiD. A.,ZhangH. F.,SunC., “Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography,” Nat. Commun.10, 4277 (2019).

[27] CannataJ. M.,RitterT. A.,ChenW. H.,SilvermanR. H.,ShungK. K., “Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control.50, 1548–1557 (2003).

[28] BrodieG.,QiuY.,CochranS.,SpaldingG. C.,MacdonaldM. P., “Letters: Optically transparent piezoelectric transducer for ultrasonic particle manipulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control61, 389–391 (2014).

[29] DangiA.,AgrawalS.,KothapalliS., “Lithium niobate-based transparent ultrasound transducers for photoacoustic imaging,” Opt. Lett.44, 5326 (2019).

[30] ChenH.,AgrawalS.,DangiA.,WibleC.,OsmanM.,AbuneL.,JiaH.,RossiR.,WangY.,KothapalliS., “Optical-resolution photoacoustic microscopy using transparent ultrasound transducer,” Sensors-Basel19, 5470 (2019).

[31] LiaoT.,LiuY.,WuJ.,ZengL.,JiX., “Centimeter-scale wide-field-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature in vivo,” Biomed. Opt. Exp.12, 2996 (2021).

[32] ChenR.,HeY.,ShiJ.,YungC.,HwangJ.,WangL. V.,ZhouQ., “Transparent high-frequency ultrasonic transducer for photoacoustic microscopy application,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control67, 1848–1853 (2020).

[33] ChenH.,OsmanM.,MirgS.,AgrawalS.,KothapalliS. R., Transparent ultrasound transducers for multiscale photoacoustic imaging, Proc. SPIE 11642 Photons Plus Ultrasound: Imaging and Sensing 2021 (2021), p.1164220.

[34] ZhouQ.,LamK. H.,ZhengH.,QiuW.,ShungK. K., “Piezoelectric single crystal ultrasonic transducers for biomedical applications,” Prog. Mater. Sci.66, 87–111 (2014).

[35] ZhangY.,SongZ.,LvM.,YangB.,WangL.,ChenC.,FengL., “Comparison of PMN–PT transparent ceramics processed by three different sintering methods,” J. Mater. Sci. Mater. Electron.28, 15612–15617 (2017).

[36] QiuC.,WangB.,ZhangN.,ZhangS.,LiuJ.,WalkerD.,WangY.,TianH.,ShroutT. R.,XuZ.,ChenL.,LiF., “Transparent ferroelectric crystals with ultrahigh piezoelectricity,” Nature577, 350–354 (2020).

[37] ChenH.,MirgS.,OsmanM.,AgrawalS.,CaiJ.,BiskowitzR.,MinottoJ.,KothapalliS., “A high sensitivity transparent ultrasound transducer based on PMN-PT for ultrasound and photoacoustic imaging,” IEEE Sens. Lett.5, 1–4 (2021).

[38] ParkB.,HanM.,ParkJ.,KimT.,RyuH.,SeoY.,KimW. J.,KimH. H.,KimC., “A photoacoustic finder fully integrated with a solid-state dye laser and transparent ultrasound transducer,” Photoacoustics23, 100290 (2021).

[39] SnookK. A.,ZhaoJ.,AlvesC. H. F.,CannataJ. M.,ChenW.,MeyerR. J.,RitterT. A.,ShungK. K., “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control49, 169–176 (2002).

[40] NiederhauserJ. J.,JaegerM.,HejaziM.,KeppnerH.,FrenzM., “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun.253, 401–406 (2005).

[41] PalaS.,LinL., Fully Transparent piezoelectric ultrasonic transducer with 3D printed substrate, 2019 20th Int. Conf. Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, pp. 234–237 (2019).

[42] KukkA.,BlumenrötherE.,RothB., “Self-made transparent optoacoustic detector for measurement of skin lesion thickness in vivo,” Biomed. Phys. Eng. Exp.8, 35029 (2022).

[43] BlumenrötherE.,MelchertO.,KanngießerJ.,WollweberM.,RothB., “Single transparent piezoelectric detector for optoacoustic sensing—Design and signal processing,” Sensors-Basel19, 2195 (2019).

[44] VarkentinA.,MazurenkaM.,BlumenrötherE.,BehrendtL.,EmmertS.,MorgnerU.,Meinhardt-WollweberM.,RahlvesM.,RothB., “Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements,” J. Biophoton.11, e201700288 (2018).

[45] LiuY. H.,LinF. S.,ChenL. X.,SuH. Y.,HuangC. H., “Wearable transparent PVDF transducer for photoacoustic imager in body sensor network,” 2020 IEEE Int. Ultrasonics Symp. (IUS), Las Vegas, NV, USA, (2020), pp.1–3.

[46] FangC.,HuH.,ZouJ., “A focused optically transparent pvdf transducer for photoacoustic microscopy,” IEEE Sens. J.20, 2313–2319 (2020).

[47] ChengF.,JunZ., “Dual-modal photoacoustic and ultrasound microscopy using optically-transparent and high-NA PVDF transducer,” Proc. SPIE.11960, 1196019 (2022).

[48] ChanJ.,ZhengZ.,BellK.,LeM.,RezaP. H.,YeowJ. T. W., “Photoacoustic imaging with capacitive micromachined ultrasound transducers: Principles and developments,” Sensors-Basel19, 3617 (2019).

[49] YasufumiA.,YoheiH.,TakahiroS.,Ken-ichiN.,KazuhikoF.,YoshiakiS.,ToshikazuM.,ShuichiK.,MarikoT.,IkuY.,ElhamF.,MasaeT.,MasahiroK.,MasahiroT.,ShotaroK.,MasakoK.,TsuyoshiS.,MasakazuT., “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt.21, 116009 (2016).

[50] ChenJ.,WangM.,ChengJ.,WangY.,LiP.,ChengX., “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59, 766–775 (2012).

[51] ZhangX.,WuX.,AdeleganO. J.,YamanerF. Y.,OralkanO., “Backward-mode photoacoustic imaging using illumination through a CMUT with improved transparency,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control65, 85–94 (2018).

[52] ZhangX.,AdeleganO.,YamanerF. Y.,OralkanO., CMUTs on glass with ITO bottom electrodes for improved transparency, 2016 IEEE Int. Ultrasonics Symp. (IUS), Tours, France, pp. 1–4 (2016).

[53] YamanerF. Y.,ZhangX.,OralkanÖ., A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding, IEEE Trans. Ultrason. Ferroelectr. Freq. Control62, 972–982 (2015).

[54] SandersJ. L.,ZhangX.,WuX.,AdeleganO. J.,YamanerF. Y.,KudenovM.,OralkanÖ., A handheld 1D transparent CMUT array probe for photoacoustic imaging: Preliminary results, 2017 IEEE Int. Ultrason. Symp. (IUS), Washington, DC, USA, pp. 1–4 (2017).

[55] IlkhechiA. K.,CeroiciC.,LiZ.,ZempR., “Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays for real-time photoacoustic applications,” Opt. Exp.28, 13750 (2020).

[56] LiZ.,IlkhechiA. K.,ZempR., “Transparent capacitive micromachined ultrasonic transducers (CMUTs) for photoacoustic applications,” Opt. Exp.27, 13204 (2019).

[57] PangD.,ChangC., “Development of a novel transparent flexible capacitive micromachined ultrasonic transducer,” Sensors-Basel17, 1443 (2017).

[58] RenD.,SunY.,ShiJ.,ChenR., “A review of transparent sensors for photoacoustic imaging applications,” Photonics8, 324 (2021).

[59] DongB.,SunC.,ZhangH. F., “Optical detection of ultrasound in photoacoustic imaging,” IEEE T. Bio.-Med. Eng.64, 4–15 (2017).

[60] MirgS.,ChenH.,KhandareS.,OsmanM.,KothapalliS., “Noise considerations in piezoelectric transparent ultrasound transducers for photoacoustic imaging applications,” Proc. SPIE.11960, 119600S (2022).

[61] ZhaoT.,OurselinS.,VercauterenT.,XiaW., “Miniaturized transparent ultrasound sensor for photoacoustic endoscopy,” Proc. SPIE.11960, 1196009 (2022).

[62] MazurM.,KaczmarekD.,DomaradzkiJ.,WojcieszakD.,SongS.,PlacidoF., Influence of thickness on transparency and sheet resistance of ITO thin films, Eighth Int. Conf. Advanced Semiconductor Devices and Microsystems, 25–27 October, 2010, Smolenice, Slovenia, pp. 65–68.

[63] ChenM.,JiangL.,CookC.,ZengY.,VuT.,ChenR.,LuG.,YangW.,HoffmannU.,ZhouQ.,YaoJ., “High-speed wide-field photoacoustic microscopy using a cylindrically focused transparent high-frequency ultrasound transducer,” Photoacoustics28, 100417 (2022).

[64] ChenH.,AgrawalS.,OsmanM.,MinottoJ.,MirgS.,LiuJ.,DangiA.,TranQ.,JacksonT.,KothapalliS., “A transparent ultrasound array for real-time optical, ultrasound, and photoacoustic imaging,” BME Front.2022, 9871098 (2022).

[65] ParkJ.,ParkB.,KimT. Y.,JungS.,ChoiW. J.,AhnJ.,YoonD. H.,KimJ.,JeonS.,LeeD.,YongU.,JangJ.,KimW. J.,KimH. K.,JeongU.,KimH. H.,KimC., “Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer,” Proc. Natl. Acad. Sci.118, e1920879118 (2021).

[66] MirgS.,ChenH.,TurnerK. L.,GheresK. W.,LiuJ.,GluckmanB. J.,DrewP. J.,KothapalliS. R., “Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window,” Opt. Lett.47, 1121–1124 (2022).

[67] SullenderC. T.,MarkA. E.,ClarkT. A.,EsipovaT. V.,VinogradovS. A.,JonesT. A.,DunnA. K., “Imaging of cortical oxygen tension and blood flow following targeted photothrombotic stroke,” Neurophotonics5, 1 (2018).

[68] SenarathnaJ.,YuH.,DengC.,ZouA. L.,IssaJ. B.,HadjiabadiD. H.,GilS.,WangQ.,TylerB. M.,ThakorN. V.,PathakA. P., “A miniature multi-contrast microscope for functional imaging in freely behaving animals,” Nat. Commun.10, 99 (2019).

[69] Şencanİ.,EsipovaT.,KılıçK.,LiB.,DesjardinsM.,YaseenM. A.,WangH.,PorterJ. E.,KuraS.,FuB.,SecombT. W.,BoasD. A.,VinogradovS. A.,DevorA.,SakadžićS., “Optical measurement of microvascular oxygenation and blood flow responses in awake mouse cortex during functional activation,” J. Cereb. Blood Flow Metab.42, 510–525 (2022).

[70] JeonS.,KimJ.,LeeD.,BaikJ. W.,KimC., “Review on practical photoacoustic microscopy,” Photoacoustics15, 100141 (2019).

[71] ChenQ.,XieH.,XiL., “Wearable optical resolution photoacoustic microscopy,” J. Biophoton.12, e201900066 (2019).

[72] WrayP.,LinL.,HuP.,WangL. V., “Photoacoustic computed tomography of human extremities,” J. Biomed. Opt.24, 1 (2019).

[73] LvJ.,LiS.,ZhangJ.,DuanF.,WuZ.,ChenR.,ChenM.,HuangS.,MaH.,NieL., “In vivo photoacoustic imaging dynamically monitors the structural and functional changes of ischemic stroke at a very early stage,” Theranostics10, 816–828 (2020).

[74] GongX.,JinT.,WangY.,ZhangR.,QiW.,XiL., “Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function,” J. Neural Eng.19, 26027 (2022).

[75] ParkS.,KangS.,ChangJ. H., “Optically transparent focused transducers for combined photoacoustic and ultrasound microscopy,” J. Med. Biol. Eng.40, 707–718 (2020).

[76] BodeaS.,WestmeyerG. G., “Photoacoustic neuroimaging — Perspectives on a maturing imaging technique and its applications in neuroscience,” Front. Neurosci.15, 655247 (2021).

[77] WangX.,LuoY.,ChenY.,ChenC.,YinL.,YuT.,HeW.,MaC., “A skull-removed chronic cranial window for ultrasound and photoacoustic imaging of the rodent brain,” Front. Neurosci.15, 673740 (2021).

[78] AlievaM.,RitsmaL.,GiedtR. J.,WeisslederR.,van RheenenJ., “Imaging windows for long-term intravital imaging,” IntraVital3, e29917 (2014).

[79] HoltmaatA.,BonhoefferT.,ChowD. K.,ChuckowreeJ.,De PaolaV.,HoferS. B.,HübenerM.,KeckT.,KnottG.,LeeW. A.,MostanyR.,Mrsic-FlogelT. D.,NediviE.,Portera-CailliauC.,SvobodaK.,TrachtenbergJ. T.,WilbrechtL., “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4, 1128–1144 (2009).

[80] DolmansD. E. J. G.,FukumuraD.,JainR. K., “Photodynamic therapy for cancer,” Nat. Rev. Cancer3, 380–387 (2003).

Hangbing Peng, Zhongwen Cheng, Lvming Zeng, Xuanrong Ji. Photoacoustic microscopy based on transparent piezoelectric ultrasound transducers[J]. Journal of Innovative Optical Health Sciences, 2023, 16(5): 2330001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!