Author Affiliations
Abstract
1 Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China
Surface-enhanced Raman scattering (SERS) substrates based on chemical mechanism (CM) have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability, uniform molecular adsorption and controllable molecular orientation. However, it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate. Herein, we demonstrate a graphene oxide (GO) energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity. The Fermi level (Ef) of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate. Experimentally, kelvin probe force microscopy (KPFM) is employed to quantitatively analyze the Ef of GO. Theoretically, the density functional theory calculations are also performed to verify the proposed modulation mechanism. Consequently, the SERS response of probe molecules with different band structures (R6G, CV, MB, PNTP) can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate. This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.
surface-enhanced Raman scattering (SERS) ferroelectric PMN-PT graphene oxide (GO) photo-induced charge transfer (PICT) 
Opto-Electronic Advances
2023, 6(11): 230094
Author Affiliations
Abstract
1 State Key Laboratory of Precision Electronics Manufacturing, Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2 Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology, Normal University Nanchang 330038, China
Photoacoustic microscopy (PAM), due to its deep penetration depth and high contrast, is playing an increasingly important role in biomedical imaging. PAM imaging systems equipped with conventional ultrasound transducers have demonstrated excellent imaging performance. However, these opaque ultrasonic transducers bring some constraints to the further development and application of PAM, such as complex optical path, bulky size, and difficult to integrate with other modalities. To overcome these problems, ultrasonic transducers with high optical transparency have appeared. At present, transparent ultrasonic transducers are divided into optical-based and acoustic-based sensors. In this paper, we mainly describe the acoustic-based piezoelectric transparent transducers in detail, of which the research advances in PAM applications are reviewed. In addition, the potential challenges and developments of transparent transducers in PAM are also demonstrated.
Photoacoustic microscopy transparent ultrasound transducer LiNbO3 PMN-PT PVDF CMUT 
Journal of Innovative Optical Health Sciences
2023, 16(5): 2330001
Author Affiliations
Abstract
1 Center of Advanced Ceramic Materials and Devices, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, P. R. China
2 State Grid Henan Electric Power Research Institute, Zhengzhou 450052, P. R. China
3 State Grid Jinhua Power Supply Company, Jinhua 321001, P. R. China
4 State Grid East Inner Mongolia Electric Power Research Institute, Hohhot 010020, P. R. China
5 State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd., Changping District, Beijing 102209, P. R. China
6 Foshan (Southern China) Institute for New Materials, Foshan 528200, P. R. China
7 Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, P. R. China
MnO2-modified Pb0.9625Sm0.025(Mg1/3Nb2/3)0.71Ti0.29O3 ceramics were prepared via a solid-state reaction approach. Results of detailed characterizations revealed that the addition of MnO2 has influence on the grain size, and all samples exhibit a pure perovskite structure. As the content of manganese increases, the volume of tetragonal phase increases. The ceramics with 1.5 mol.% MnO2 show a high electro-strain of 0.151% at 2 kV/mm. Therefore, this study provides a new insight into the role of MnO2 addition in tailoring the electrical properties of the Sm-PMN-PT ceramics by acceptor doping.
Perovskite structure MnO2 addition Sm-PMN-PT ceramics electro-strain acceptor doping 
Journal of Advanced Dielectrics
2023, 13(3): 2350004
作者单位
摘要
1 南开大学电子信息与光学工程学院微尺度光学信息技术科学重点实验室,天津 300350
2 山东大学晶体材料国家重点实验室,山东 济南 250100
Overview: With the development of modern manufacturing, the size of optical devices is gradually developing towards miniaturization, and integrated optics is also developing to become a topical area of research for many scholars. One of the methods used for producing micro/nano optical devices is femtosecond laser direct writing, a fine three-dimensional processing technique that has been extensively studied by many scholars for its applicability to most materials and can be applied to the fabrication of a wide range of optical devices. Micro/nano-optical devices prepared by femtosecond laser direct writing in crystals have been applied in a broad range of applications in different wavelengths. PMN-PT crystal with relaxed ferroelectric has attracted much attention in recent years for its superior piezoelectric property and large electromechanical coupling coefficient, and its application in the infrared band is more prominent, so the fabrication of the optical devices based on PMN-PT crystal has gradually become a relevant research hotspot. The LIPSS is one of the micro/nano-structures that can be processed by femtosecond laser direct writing. The LIPSS is prevalent in many materials and has been found in metals, semiconductors, dielectrics, etc. Similarly, LIPSS can be induced by femtosecond lasers in PMN-PT crystal. The LIPSS has a wide range of applications in the fields of anti-reflectivity, permanent coloration, and wettability. Nevertheless, the physical processes and the mechanisms involved in the formation of LIPSS have different interpretations in different materials. In this paper, we describe the LIPSS induced by femtosecond laser on the surface of the PMN-PT crystal and characterize it theoretically. We have achieved a change in the period of the LIPSS from 750 nm to 3000 nm after experimenting with different laser parameters. Afterward, we simultaneously obtained the phase transition of the LIPSS in PMN-PT crystal through temperature modulation, and this phase transition can be analyzed by the variation of the Raman spectra. At the same time, we have obtained the Curie temperature for the LIPSS structure that is approximately 10 ℃ lower than that of the PMN-PT crystal and have analyzed the phase transition process through the structural properties of the PMN-PT crystal. The results of our experiments and analyzes on the LIPSS in PMN-PT crystal reported in this paper can provide some experience for the subsequent development of the optical devices related to the LIPSS in PMN-PT crystal.
飞秒激光直写 表面周期结构 PMN-PT晶体 相变 femtosecond laser direct writing LIPSS PMN-PT crystal phase transition 
光电工程
2023, 50(3): 220275
Xudong Qi 1,*Kai Li 2Lang Bian 3Enwei Sun 3[ ... ]Rui Zhang 3,**
Author Affiliations
Abstract
1 School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China
2 Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, P. R. China
3 School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
4 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
Relaxor-based ternary Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) single crystals and ceramics are promising candidates for high-performance electromechanical conversion devices. It is known that the domain structure and dielectric diffusion–relaxation characteristics are crucial to the excellent performances of relaxor ferroelectrics. In this work, we prepared the PIN–PMN–PT ceramics with various PIN/PMN proportions and systematically investigated their domain structure and dielectric diffusion–relaxation properties. The effect of PIN/PMN proportion on the domain size and dielectric diffusion–relaxation characteristics was also studied. The investigations showed that PIN–PMN–PT ceramics presented multi-type domain patterns comprising irregular island domains and regular lamellar domains. Moreover, the dependent relations of PIN/PMN proportions on the dielectric diffusion and domain size indicated that the PIN composition has a stronger lattice distortion than PMN composition; increasing the PIN proportion can enhance the dielectric diffusion and decrease the domain size. Our results could deepen the understanding of structure–property relationships of multicomponent relaxor ferroelectrics and guide the design and exploration of new high-performance ferroelectric materials.Relaxor-based ternary Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) single crystals and ceramics are promising candidates for high-performance electromechanical conversion devices. It is known that the domain structure and dielectric diffusion–relaxation characteristics are crucial to the excellent performances of relaxor ferroelectrics. In this work, we prepared the PIN–PMN–PT ceramics with various PIN/PMN proportions and systematically investigated their domain structure and dielectric diffusion–relaxation properties. The effect of PIN/PMN proportion on the domain size and dielectric diffusion–relaxation characteristics was also studied. The investigations showed that PIN–PMN–PT ceramics presented multi-type domain patterns comprising irregular island domains and regular lamellar domains. Moreover, the dependent relations of PIN/PMN proportions on the dielectric diffusion and domain size indicated that the PIN composition has a stronger lattice distortion than PMN composition; increasing the PIN proportion can enhance the dielectric diffusion and decrease the domain size. Our results could deepen the understanding of structure–property relationships of multicomponent relaxor ferroelectrics and guide the design and exploration of new high-performance ferroelectric materials.
Piezoelectric ceramics PIN–PMN–PT dielectric diffusion and relaxation characteristics domain structure 
Journal of Advanced Dielectrics
2022, 12(6): 2241002
Author Affiliations
Abstract
1 Electric Power Intelligent Sensing Technology and Application State Grid Corporation Joint Laboratory, Future Science Park, Changping District, 102209 Beijing, P. R. China
2 Department of Electric Power Sensing Technology, Global Energy Interconnection Research Institute co., Ltd., Future Science Park, Changping District, 102209 Beijing, P. R. China
3 Foshan (Southern China) Institute for New Materials, Nanhai District, 528200 Foshan, P. R. China
4 Center of Advanced Ceramic Materials and Devices, Yangtze Delta Region Institute of Tsinghua University, 314006 Zhejiang, P. R. China
A series of (100x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMNxPT, x= 24, 25, 26) ceramics were prepared by solid-state reaction technique using MgNb2O6 precursor. The results of the detailed characterizations reveal that the content of PT has negligible influence on the grain size, and all samples possess the perovskite structure. As the PT content increases, the samples changed from the normal ferroelectric phase to the ergodic relaxor state at room temperature. As a result, PMN–xPT ceramics are endowed with electro-strain of 0.08% at a relatively low electric field of 2 kV/mm, and effective piezoelectric coefficient of 320 pm/V was obtained. Simultaneously, the PMN–xPT ceramics have exceptional pyroelectric performance, exhibiting a high pyroelectric coefficient p5.5 – 6.3 × 108 C⋅cm2⋅K1. This study demonstrates the great potential of PMN–xPT for piezoelectric and pyroelectric device applications.A series of (100x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMNxPT, x= 24, 25, 26) ceramics were prepared by solid-state reaction technique using MgNb2O6 precursor. The results of the detailed characterizations reveal that the content of PT has negligible influence on the grain size, and all samples possess the perovskite structure. As the PT content increases, the samples changed from the normal ferroelectric phase to the ergodic relaxor state at room temperature. As a result, PMN–xPT ceramics are endowed with electro-strain of 0.08% at a relatively low electric field of 2 kV/mm, and effective piezoelectric coefficient of 320 pm/V was obtained. Simultaneously, the PMN–xPT ceramics have exceptional pyroelectric performance, exhibiting a high pyroelectric coefficient p5.5 – 6.3 × 108 C⋅cm2⋅K1. This study demonstrates the great potential of PMN–xPT for piezoelectric and pyroelectric device applications.
Perovskite PMN–PT electro-strain ferroelectric phase 
Journal of Advanced Dielectrics
2022, 12(3): 2250002
作者单位
摘要
1 中国科学院声学研究所 声场声信息国家重点实验室, 北京 100190
2 中国科学院大学, 北京 100049
压电微机械超声换能器(PMUT)在医疗阵列成像、手势识别、内窥成像、指纹识别等领域有着重要的应用, 而灵敏度等性能是影响其成像质量的主要因素。该文对基于PMN-PT圆形压电复合振动膜的压电微机械超声换能器等效电路模型进行分析, 并通过有限元法研究了压电层PMN-PT厚度对PMUT的发射电压响应、接收灵敏度的影响。仿真结果表明, 当压电层厚度为4.5 μm(厚度为基底厚度的90%)时, 换能器的发射电压响应级最大, 达到191.6 dB, 接收灵敏度级随厚度的增加基本呈线性上升趋势; 当压电层厚度为5.1 μm(厚度为基底厚度的102%)时, 回路增益(损耗)最大, 达到-64.50 dB。
PMN-PT薄膜 回路增益(损耗) 接收灵敏度 发射电压响应 Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) thin film PMUT PMUT loop gain (loss) receiving sensitivity transmitting voltage response 
压电与声光
2022, 44(3): 403
作者单位
摘要
1 西安交通大学 电信学部,电子与科学工程学院,电子陶瓷与器件教育部重点实验室,陕西 西安710049
2 中国科学院 福建物质结构研究所,福建 福州 350002
折射率是光学晶体的基本参数,准确测定晶体的折射率能够为晶体的电光、声光、非线性应用提供基本计算参数和实验参量。为了准确测定Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)晶体在可见光和近红外波段的折射率系数,搭建了激光自准直折射率测量系统,对纯铌酸锂晶体的折射率测试结果与现有文献报道误差小于1/1 000,使用该系统对沿<001>极化的Pb(Mg1/3Nb2/3)O3-0.39PbTiO3(PMN-0.39PT)单畴晶体进行了测定,得到了单畴的PMN-0.39PT晶体在波长分别为594 nm、633 nm、1 150 nm和1 520 nm时的折射率和色散方程,测量结果与现有文献规律性一致。结果表明该方法可用于准确快速测定新型电光晶体折射率。
激光自准直法 Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)单晶 折射率测量 laser autocollimation PMN-PT single crystal refractive index measurement 
压电与声光
2022, 44(1): 139
Author Affiliations
Abstract
1 Grupo de Ferroelétricos e Materiais Multifuncionais, Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38408-100, Brazil
2 Universidade Federal do Tocantins, Porto Nacional, Tocantins 77500-000, Brazil
3 Departamento de Física e Química, Universidade Estadual Paulista, Ilha Solteira – São Paulo 15385-000, Brazil
4 Department of Physics, Universitat Politècnica de Catalunya – BarcelonaTech, Barcelona 08034, Spain
Electromechanical and dielectric properties of PMN–PT ferroelectric ceramics are investigated. In particular, dielectric response studies focus on the investigation of the influence of the DC applied electric field on the dielectric permittivity as a function of temperature and frequency. Results reveal an electric field driven dielectric anomaly in the dielectric permittivity curves, 𝜀(E), which in turn prevails in the whole ferroelectric phase region and continuously vanishes for temperatures near the paraelectric-ferroelectric phase transition temperature. A schematic model for the domains dynamics of the studied material is proposed taking into account the simultaneous contribution of both 90 and 180 domains walls.Electromechanical and dielectric properties of PMN–PT ferroelectric ceramics are investigated. In particular, dielectric response studies focus on the investigation of the influence of the DC applied electric field on the dielectric permittivity as a function of temperature and frequency. Results reveal an electric field driven dielectric anomaly in the dielectric permittivity curves, 𝜀(E), which in turn prevails in the whole ferroelectric phase region and continuously vanishes for temperatures near the paraelectric-ferroelectric phase transition temperature. A schematic model for the domains dynamics of the studied material is proposed taking into account the simultaneous contribution of both 90 and 180 domains walls.
Ferroelectrics PMN–PT domain-walls dielectric response electric field 
Journal of Advanced Dielectrics
2021, 11(3): 2140005
作者单位
摘要
1 电子科技大学 电子科学与工程学院, 四川 成都 610054
2 模拟集成电路重点实验室(国家级),重庆 400060
该文研究了Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIN-PMN-PT)基片上声表面波(SAW)的传播特性。利用COMSOL软件建立SAW谐振器三维模型并进行模拟仿真。通过优化谐振器参数, 设计了一种具有超大机电耦合系数(K2)的谐振器结构。结果表明, 当欧拉角为(0°,-70°,0°)时, SH0模态的K2可优化到约85%, 且通带内无寄生响应。
声表面波(SAW) SH0模态 机电耦合系数 surface acoustic wave(SAW) PIN-PMN-PT PIN-PMN-PT COMSOL COMSOL SH0 mode electromechanical coupling coefficient 
压电与声光
2021, 43(3): 328

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!