激光与光电子学进展, 2014, 51 (2): 021401, 网络出版: 2014-01-21  

1.31 μm InGaAsP/InGaAlAs TM偏振高速激光器的优化设计 下载: 839次

Design Optimization of 1.31 μm InGaAsP/InGaAlAs TM Mode High Speed Lasers
作者单位
1 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室, 江苏 苏州 215123
2 中国科学院大学, 北京 100049
摘要
报道了一种以InGaAsP(阱)/InGaAlAs(垒) 量子阱为有源区的[1.31 μm]TM偏振高速激光器。以1% 张应变的 In0.49Ga0.51As0.79P0.21作为阱层,0.5%压应变的InGaAlAs作为垒层,计算了由不同势垒带隙(1.309、1.232、1.177、1.136、1.040 eV)构成的五种多量子阱的发光特性,和由其构成的激光器的器件特性。数值模拟分析表明,采用适度小的势垒带隙,既能将载流子有效限制在有源区,又可以得到载流子在量子阱间的均匀分布,从而改善量子阱的发光特性和激光器的性能参数。该仿真对研制低阈值电流、高特征温度和大调制带宽的InGaAsP/InGaAlAs应变补偿量子阱激光器具有指导意义。
Abstract
A novel design scheme for high speed [1.31 μm]TM mode lasers based on InGaAsP (well)/InGaAlAs (barrier) strain-compensated multiple quantum wells (MQWs) is proposed. Calculation on luminescence property with five different MQWs (10 nm, 1% tensile-strained In0.49Ga0.51As0.79P0.21 well with 12 nm, 0.5% compress-strained InGaAlAs barriers of Eg =1.309, 1.232, 1.177, 1.136, 1.040 eV, respectively) and simulation on laser diodes based on these MQWs are presented. The results of these studies indicate that moderately small barrier height can not only provide effective confinement for charge carriers, but also make carrier distribution in the MQWs more uniform, thus acquiring advantageous luminescence property and device performance. Our investigation gives guidance to the design and fabrication of [1.31 μm] TM mode lasers of low threshold current, high characteristic temperature, and wide modulation bandwidth.
参考文献

[1] E P O′Reilly, G Jones, A Ghiti, et al.. Improved performance due to suppression of spontaneous emission in tensile-strain semiconductor lasers[J]. Electron Lett, 1991, 27(16): 1417-1419.

[2] S W Ryu, W G Jeong, B D Choe. Analysis of the performance of [1.55 μm] InGaAs-InP tensile strained quantum-well lasers[J]. IEEE J Quantum Electron, 1999, 35(8): 1207-1212.

[3] Piprek J, Abraham P, Bowers J E. Carrier nonuniformity effects on the internal efficiency of multiquantum well lasers [J]. Appl Phys Lett,1999, 74(4): 489-491.

[4] Yasuhiro Matsui, Hitoshi Murai, Shin Arahira, et al.. Enhanced modulationbandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers[J].IEEE J Quantum Electron, 1998, 34(10): 1970-1978.

[5] M Nadeem Akram, O Kjebon, M Chacinski, et al.. Experimental characterization of high-speed [1.55 μm] buried heterostructure InGaAsP/InGaAlAs quantum-well lasers[J]. J Opt Soc Am B, 2009, 26(2): 318-327.

[6] Yasuhiro Matsui, Hitoshi Murai, Shin Arahira, et al.. 30-GHz bandwidth [1.55-μm] strain-compensated InGaAlAs-InGaAsP MQW laser[J]. IEEE Photon Technol Lett, 1997, 9(1): 25-27.

[7] M Nadeem Akram, Christofer Silfvenius, Olle Kjebon, et al.. Design optimization of InGaAsP–InGaAlAs [1.55 μm] strain-compensated MQW lasers for direct modulation applications[J].Semicond Sci Technol, 2004, 19(5): 615–625.

[8] Piprek J, White J K, SpringThorpe A J. What limits the maximum outputpower of long-wavelength AlGaInAs/InP laser diodes[J].IEEE J QuantumElectron, 2002, 38(9): 1253–1259.

[9] LASTIP Users′s Manual 2011[EB/OL].http://www.crosslight.com

[10] J C L Yong, J M Rorison, I H White. 1.3 μm quantum-well InGaAsP,AlGaInAs,and InGaAsN laser material gain: a theoretical study[J]. IEEE J Quantum Electron, 2002, 38(12): 1553-1564

[11] S Mogg, J Piprek. Optimization of the barrier height in 1.3 μm InGaAsPmultiple-quantum-well active regions for high temperature operation[C]. SPIE, 2001, 4283: 227-237.

[12] Masaaki Nido, Koh-ichi Naniwae, Jun-ichi Shimizu, et al.. Analysis of differential gain in InGaAs-InGaAsP compressive and tensile strained quantum-Well lasers and its application for estimation of high-speed modulation limit[J].IEEE J Quantum Electron, 1993, 29(3): 885-895.

曾徐路, 于淑珍, 李奎龙, 孙玉润, 赵勇明, 赵春雨, 董建荣. 1.31 μm InGaAsP/InGaAlAs TM偏振高速激光器的优化设计[J]. 激光与光电子学进展, 2014, 51(2): 021401. Zeng Xulu, Yu Shuzhen, Li Kuilong, Sun Yurun, Zhao Yongming, Zhao Chunyu, Dong Jianrong. Design Optimization of 1.31 μm InGaAsP/InGaAlAs TM Mode High Speed Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 021401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!