红外与激光工程, 2022, 51 (5): 20210354, 网络出版: 2022-06-14   

高光束质量3×1光纤功率合束器的研制

Research on high beam quality 3×1 fiber signal combiner
付敏 1李智贤 1王泽锋 1,2,3陈子伦 1,2,3,*
作者单位
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 高能激光技术湖南省重点实验室,湖南 长沙 410073
3 大功率光纤激光湖南省协同创新中心,湖南 长沙 410073
摘要
在基于光纤功率合束器的高功率合成方案中,合成后激光保持好的光束质量是当前激光领域亟待解决的问题之一。实现了一种高光束质量光纤功率合束器的研制。首先,利用仿真软件建立3×1光纤功率合束器模型,对影响功率合束器光束质量和传输效率的因素进行了仿真,得到了制作合束器最佳参数的理论值;其次,基于光纤包层腐蚀技术,根据仿真结果利用熔融拉锥光纤束技术研制了一种输出光纤为50/400 μm (NA=0.12)的高光束质量3×1光纤功率合束器;最后,利用三台3 kW的光纤激光器对其进行了测试,在总输入功率为8.95 kW的情况下,合束后输出功率为8.62 kW,整体传输效率大于96%,光束质量M2=4.035。
Abstract
In the high power synthesis schemes based on fiber signal combiner, it is one of the urgent problems to be solved in the current laser field to maintain good beam quality after beam combining. A kind of high beam quality fiber signal combiner was developed. Firstly, the model of a 3×1 fiber signal combiner was established by using simulation software, and the factors affecting the beam quality and transmission efficiency of combiner were simulated, and the theoretical values of optimum parameters of combiner were obtained. Secondly, based on the etched fiber cladding technology, a high beam quality 3×1 fiber signal combiner with an output fiber of 50/400 μm (NA=0.12) was fabricated by using the taper-fused fiber bundles technology according to simulation results. Finally, three 3 kW fiber lasers were used to test the combiner. Under the condition that the total input power is 8.95 kW, the output power after beam combining is 8.62 kW, the overall transmission efficiency is more than 96%, and the beam quality is M2=4.035.

0 引 言

近年来,光纤激光器因其光束质量好、转换效率高和结构紧凑等优点,在工业加工、****、生物医疗等多个领域得到了广泛应用,同时随着研究人员的不断探索,其输出功率与光束质量也在不断提升[1-2]。然而受限于热损伤、非线性效应、泵浦亮度和模式不稳定等因素的影响,单根光纤激光器输出功率的提升遇到了瓶颈[3],而通过光纤激光合成技术则可以很好地解决这一问题。其中,基于光纤功率合束器的光纤激光合成技术可以实现全光纤化,具有结构紧凑、可靠性高、成本低、稳定性好等优势,目前被广泛应用于大功率全光纤激光器系统中[4]。作为其核心元器件,能够同时承载高功率和输出高光束质量的光纤功率合束器的研制引起了国内外研究人员的广泛关注。

2011年,美国的JDSU公司采用纤芯直径为20 μm (NA=0.065)的输入光纤和纤芯直径为100 μm的输出光纤制作了7×1光纤功率合束器,对7个功率为600 W的激光器进行合成,最终合成功率为4.2 kW,光束质量为M2≈7.3[5]。2014年,德国的耶拿大学为了提高合束激光的光束质量,将合束器的输出光纤纤芯直径变为50 μm,基于套管法采用两种方案制作了7×1光纤功率合束器,实现了大于5 kW的合束激光输出,测量光束质量分别为M2≈6.5和M2≈4.6[6-7]。2018年,国防科技大学笔者课题组选用20/400 μm的输入光纤,实现了输出光纤为50/70/360 μm (纤芯NA=0.22) 的7×1光纤合束器的研制,将合成功率提高至14 kW,光束质量为M2=5.37[8]。2019年,笔者课题组减少输入光纤路数,采用20/400 μm (NA=0.065)的输入光纤以及50/400 μm (NA=0.12)的输出光纤制作了3×1光纤功率合束器,合成后激光输出功率为6.06 kW,光束质量提高至 M2≈3.69[9]。2020年,课题组为提高单路功率承载能力,采用30/250 μm的光纤作为输入光纤,50/70/360 μm (NA=0.22)作为输出光纤研制3×1光纤功率合束器,实现了单路大于4 kW的激光合束,合成功率大于13 kW,但由于输入激光的光束质量M2约为2,导致合成激光的光束质量也较差,M2约为6左右[10]。同年,中国科学院激光研究中心报道了一款7×1光纤信号合束器,采用25/250 μm的输入光纤以及纤芯直径为100 μm的输出光纤,给出此合束器理论上可以获得大于10 kW的激光功率合成输出,合束器的总传输效率为98.7%[11]。根据目前已有研究来看,光纤功率合束器尚不能较好地兼顾高功率和高光束质量。

文中在前面研究的基础上,为了在保持高光束质量的同时进一步提高合成输出功率,选用可兼顾较大功率承载能力和较好输入光束质量的25/400 μm (NA=0.065)输入光纤,同时采用较少的输入路数,基于光纤包层腐蚀技术研制了输出光纤为50/400 μm (NA=0.12)的可同时承载高功率和保持高光束质量的3×1光纤功率合束器,并对该合束器的承载功率和光束质量进行了测试。

1 理论分析及仿真计算

1.1 光纤合束器制作的两大基本准则

光束质量和传输效率是光纤功率合束器最关键的两大性能指标,为最大限度降低光纤的功率损耗以及光束质量退化,合束器在制作中必须满足两大基本原则:绝热拉锥和亮度守恒。

1.1.1 绝热拉锥

光纤的拉锥过程改变了光纤的波导结构,锥区会不可避免地引入损耗,因此为了使损耗尽可能地小,锥区必须满足绝热拉锥条件[12]。通常认为,光纤锥区的长度越长,光纤波导结构的变化就越平缓,拉锥引起的损耗就越小。但拉锥长度过长,将会不利于后期的切割、熔接与封装。因此必须合理设计锥区长度,使其既满足绝热拉锥又方便实际操作。

1.1.2 亮度守恒

亮度守恒原则可以计算出输入光纤的入射光能否全部被输出光纤接收。定义亮度比率(Brightness Ratio, BR)为合束器输出光纤的亮度与输入光纤的总亮度之比,

$ BR = \frac{{D_{out}^2NA_{out}^2}}{{nD_{in}^2NA_{in}^2}} $ ()

式中: ${D_{in}}$${D_{out}}$分别为输出光纤与输入光纤的直径; $N{A_{in}}$$N{A_{out}}$分别为输出光纤与输入光纤的数值孔径;n为输入光纤的数量;当亮度比率BR≥1时, ${D_{out}^2NA_{out}^2}$${nD_{in}^2NA_{in}^2}$,即输出光的亮度大于输入光的总亮度,此时能保证合束器理论上可无损耗传输[13]

1.2 光纤功率合束器的光束质量和传输效率影响因素及仿真

在影响功率合束器光束质量的诸多因素中,其中一个重要因素就是熔融拉锥光纤束(Taper-Fused Fiber Bundles, TFB)的纤芯占空比。TFB的纤芯占空比可以理解为拉锥后玻璃管内光纤的纤芯直径与相邻两光纤之间的距离之比,而增大TFB的纤芯占空比理论上可以提高功率合束器的光束质量。增大占空比即需使输入光纤的包层尽可能地薄,因为文中研制合束器所用激光器的输出光纤是25/400 μm光纤,如果直接作为输入光纤组束拉锥,一方面纤芯占空比过小,会严重影响光束质量,另一方面则需要较长的锥区来满足绝热拉锥条件以保持高传输效率,不利于后期操作,所以将采用氢氟酸腐蚀输入光纤的方法来增大TFB 的纤芯占空比,通过控制浸泡时间的长短来控制包层的厚度。

笔者利用仿真软件建立了3×1光纤功率合束器的模型,模型中合束器锥区设置为15 mm,腰区设置为5 mm,输出光纤长度设置为15 mm,根据光束传输法得到激光在功率合束器中的传播过程如图1所示,在TFB的锥区,激光基本限制在光纤纤芯内传播,泄漏至包层的光非常弱。激光进入TFB的腰区后,光从输入光纤的包层中泄露,与邻近光纤内的光耦合,但此时耦合程度较弱,而后激光通过熔点进入输出光纤,在输出光纤中耦合,激发出多种模式。

图 1. 激光在功率合束器中的传播过程

Fig. 1. Propagation process of laser in the fiber signal combiner

下载图片 查看所有图片

为得到光纤功率合束器的最佳制作参数,通过仿真计算了输入光纤的包层尺寸在80~200 μm范围内所对应的输出光束的M2和传输效率,其关系曲线如图2所示,由该曲线可知,该合束器的光束质量随着输入光纤包层尺寸从200 μm减小至130 μm而明显提升,但包层尺寸从130 μm继续减小,光束质量反而出现退化现象;同时合束器的传输效率也在输入光纤包层尺寸为130 μm时取得较大值。根据仿真结果,选择130 μm作为输入光纤包层尺寸,此时该合束器输出光束的M2因子和传输效率分别达到3.09和98.72%。

图 2. 不同的输入光纤包层尺寸的合束器对应的光束质量和传输效率

Fig. 2. Beam quality and transmission efficiency of combiner with different cladding diameters of input fiber

下载图片 查看所有图片

2 合束器的制作与测试

2.1 3×1光纤功率合束器的制作

光纤功率合束器的制作具体可分为以下四步:

(1)光纤组束及玻璃管拉制:先用氢氟酸将三根25/400 μm (NA=0.065)的输入光纤均腐蚀至130 μm,后将其排列整齐组成光纤束。对玻璃管进行第一次拉锥,使光纤束刚好穿进且不至于在管内随意滑动。

(2)光纤束熔融拉锥:将光纤束进行拉锥得到TFB,结合绝热拉锥原则以及后期封装操作难度,设定锥区长度为15 mm,腰区长度为10 mm。

(3) TFB切割及输出光纤处理:TFB拉制完成后,将其在腰区切割,图3所示为较为理想的TFB切割端面,端面平整且无裂痕。输出光纤采用50/400 μm (NA=0.12)光纤,利用氢氟酸将其腐蚀变细至125 μm以减小熔接难度;同时用腐蚀液对其进行滤除处理,目的是使包层表面变得粗糙,有效滤除输出光纤中的包层光,滤除处理后的输出光纤如图4所示。

图 3. 熔点处TFB端面图

Fig. 3. Cross section of TFB at splicing point

下载图片 查看所有图片

图 4. 经滤除处理的光纤

Fig. 4. Stripped fiber

下载图片 查看所有图片

(4) TFB与输出光纤熔接:图5为较理想的熔接效果。

图 5. TFB与输出光纤的熔点

Fig. 5. Splicing point between TFB and output fiber

下载图片 查看所有图片

2.2 3×1光纤功率合束器测试

合束器制作完成后将其封装在定制夹具中,利用三台工作波长为1080 nm、最大输出功率为3 kW的激光器对其进行了测试。该激光器采用20/400 μm的增益光纤,经包层光滤除后连接 25/400 μm的输出光纤,其输出端直接熔接25/400 μm端帽时的光束质量测试结果如图6(a)~(c)所示,当输出功率为3 kW 时,三台激光器的M2分别为1.27、1.30和1.36。

图 6. 激光器直接熔接25/400 μm端帽时的光束质量分别为(a) M2=1.27; (b) M2=1.30; (c) M2=1.36

Fig. 6. Beam quality of lasers fused with the 25/400 μm end cap is (a) M2=1.27; (b) M2=1.30; (c) M2=1.36

下载图片 查看所有图片

图 6. 激光器直接熔接25/400 μm端帽时的光束质量分别为(a) M2=1.27; (b) M2=1.30; (c) M2=1.36

Fig. 6. Beam quality of lasers fused with the 25/400 μm end cap is (a) M2=1.27; (b) M2=1.30; (c) M2=1.36

下载图片 查看所有图片

对合束器三臂同时通光,其装置如图7所示,当总输入功率为8.95 kW时,合束后输出功率为8.62 kW,整体传输效率大于96%,此时合束器夹具(已通水冷)外表面温度为29 ℃ (环境温度25 ℃),并用型号为LQM+200的光束质量分析仪(束宽采用光束强度分布的二阶矩计算)测得光束质量为M2=4.035,如图8所示,随着功率升高,合束器光束质量的变化如图9所示,可知合束器在承受高功率时光束质量基本保持不变。

图 7. 合束器输出功率测试装置

Fig. 7. Device for testing output power of combiner

下载图片 查看所有图片

图 8. 输出功率为8 620 W时的光束质量测量结果

Fig. 8. Measured result of beam quality at 8 620 W output power

下载图片 查看所有图片

图 9. 随着输出功率升高对应的合束器光束质量

Fig. 9. Beam quality of the combiner with the increase of output power

下载图片 查看所有图片

3 结束语

文中提出了一种输出高光束质量且能承载高功率的3×1光纤功率合束器,通过仿真软件建立模型计算了TFB纤芯占空比对光束质量和传输效率的影响,确定了最佳的输入光纤包层尺寸。利用熔融拉锥光纤束技术制作出一种3×1光纤功率合束器,在总输入功率为8.95 kW的情况下,合束后输出功率为8.62 kW,整体传输效率大于96%,光束质量M2=4.035。实验测试结果与仿真尚有一定差距,分析其原因主要有:一是仿真模拟为仅基模输入的理想情况,而实验中所用激光器输出含有少量高阶模,对合束器输出的光束质量会造成一定劣化;二是光纤功率合束器在制作过程中,拉锥、切割和熔接等步骤不可避免会引入少量损耗,同时导致光束质量发生劣化。因此,后期仍可通过优化合束器制作工艺以减少损耗,提升光纤功率合束器的承载功率和输出光束质量。

参考文献

[1] Dang Wenjia, Li Zhe, Lu Na, , et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14: 264-274.

[2] Fang Zeyuan, Yin Lu, Yan Mingjian, , et al. Study on signal light transmission efficiency enhancement of backward pump-signal combiners in high-power fiber lasers[J]. Infrared and Laser Engineering, 2020, 49(10): 20200014.

[3] Wang Zheng, Yan Mingjian, Yin Lu, , et al. Stripping of cladding light at different angles: theoretical and experimental studies[J]. Chinese Optics, 2019, 12(5): 1124-1130.

[4] Chen Zilun, Zhou Xuanfeng, Wang Zefeng, , et al. Review of all-fiber signal combiner for high power fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 0103005.

[5] Muendel M H, Farrow R, Liao K H, et al. Fused fiber pump signal combiners f a 4kW ytterbium fiber laser[C]Processings of SPIE, 2011, 7914: 791431.

[6] Eschrich T, Hoh D, Just F, et al. Incoherent beam combining of 5.1 kW using a 7×1 signal combiner into a 50 µm ce output fiber [C]Advanced Photonics, 2014: JTu6A. 1.

[7] Plötner M, de Vries O, Schreiber T, et al. High power incoherent beam combining by an allglass 7:1 fiber coupler with high beam quality[C]Advanced Solid State Lasers, Shanghai, 2014: ATh2A. 17.

[8] Lei Chengmin, Gu Yanran, Chen Zilun, , et al. Incoherent beam combining of fiber lasers by an all-fiber 7×1 signal combiner at a power level of 14 kW[J]. Optics Express, 2018, 26(8): 10421.

[9] Yang Huan, Lei Chengmin, Wu Weijun, , et al. 3×1 all-fiber signal combiner with high beam quality for high-power lasers[J]. Laser Physics, 2020, 30(2): 025102.

[10] Wu Weijun, Chen Zilun, Wang Zefeng, , et al. Beam combining of fiber lasers by a 3 × 1 signal combiner at a power >13 kW[J]. Optical Fiber Technology, 2020, 54: 102109.

[11] Huang Shan, Liu Yu, Tao Rumao, et al. Lossless allfiber 7×1 signal combiner f beyond 10 kW high power operation[C]Jiang Huilin, Chu Junhao. Sixth Symposium on Novel Optoelectronic Detection Technology Applications, 2020: 195.

[12] Zhou Hang, Chen Zilun, Zhou Xuanfeng, , et al. All-fiber 7×1 signal combiner for high power fiber lasers[J]. Applied Optics, 2015, 54(11): 3090-3094.

[13] Han Lixiang, Hao Mingming. Direct combining output of fiber coupled laser diodes via fiber combiner with high efficiency and multiple input ports[J]. Optik, 2020, 218: 165268.

付敏, 李智贤, 王泽锋, 陈子伦. 高光束质量3×1光纤功率合束器的研制[J]. 红外与激光工程, 2022, 51(5): 20210354. Min Fu, Zhixian Li, Zefeng Wang, Zilun Chen. Research on high beam quality 3×1 fiber signal combiner[J]. Infrared and Laser Engineering, 2022, 51(5): 20210354.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!