激光生物学报, 2022, 31 (3): 202, 网络出版: 2022-07-25   

细菌协同植物治理重金属污染作用机制的研究进展

Research Progress on the Mechanism of Bacteria-plants Joint Governance of Heavy Metal Pollution
作者单位
成都医学院公共卫生学院, 成都 610500
摘要
目前, 治理重金属污染的方法有很多, 其中利用植物与细菌联合治理的方法具有成本低、效益高等优势, 受到人们广泛关注。在重金属胁迫下, 许多细菌不仅发展出很强的重金属耐受性, 而且可以通过溶磷作用、固氮作用、解钾作用、分泌相关代谢产物等途径促进植物生长, 也可以通过改变金属流动性、诱导相关基因高表达等途径增强植物对重金属的抵抗能力。本文就细菌与植物协同治理重金属污染的作用机制展开综述, 以期为细菌协同植物治理重金属污染的应用和研究提供参考。
Abstract
At present, there are many methods to govern heavy metal pollution, among which the joint governance of plants and bacteria has the advantages of low cost and high benefit, which has attracted extensive attention. Under heavy metal stress, many bacteria not only develop strong tolerance to heavy metals, but also promote plant growth by dissolving phosphorus, fixing nitrogen, dissolving potassium and secreting related metabolites. They can also enhance plant resistance to heavy metals by changing metal fluidity and inducing high expression of related genes. In this paper, the mechanism of bacteria-plants joint governance of heavy metal pollution was reviewed to provide reference for the application and research of bacteria-plants joint governance of heavy metal pollution.
参考文献

[1] BUHARI T R, ISMAIL A. Pollution status of heavy metals in surface sediments collected from west coast of peninsular malaysia[J]. Open Access Library Journal, 2020, 7(10): 1-19.

[2] 李淋萍, 吕忠祥. 重金属污染土壤修复技术研究的现状与展望[J]. 化工管理, 2020(29): 76-77.

[3] NOURBAKHSH M, SAG? Y, ?ZER D, et al. A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters[J]. Process Biochemistry, 1994, 29(1): 1-5.

[4] 马永和, 许瑞, 王丽敏, 等. 植物修复重金属污染土壤研究进展[J]. 矿产保护与利用, 2021, 41(4): 12-22.

[5] BRAHMI M, ACHOUR N, HASSEN A. Identification and characterization of heavy mental-resistant bacteria selected from different polluted sources[J]. Desalination and Water Treatment, 2014, 52(37-39): 7037-7052.

[6] LUCIO V, LILIANA I, ADRIANA F. Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria[J]. Applied Soil Ecology, 2018, 132: 1-10.

[7] JEONG S, MOON H S, NAM K, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil[J]. Chemosphere, 2012, 88(2): 204-210.

[8] LLIMóS M, BISTUé M, MARCELINO J, et al. A native Zn-solubilising bacterium from mine soil promotes plant growth and facilitates phytoremediation[J]. Journal of Soils and Sediments, 2021, 21(6): 2301-2314.

[9] 李诗奇, 李政, 王仙宁, 等. 植物对氮磷元素吸收利用的生理生态学过程研究进展[J]. 山东农业科学, 2019, 51(3): 151-157.

[10] HERRERA-QUITERIO A, TOLEDO-HERNáNDEZ E, AGUIRRE-NOYOLA J L, et al. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico[J]. Revista Argentina de Microbiologia, 2020, 52(3): 231-239.

[11] ISLAM M R, SULTANA T, JOE M M, et al. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper[J]. Journal of Basic Microbiology, 2013, 53(12): 1004-1015.

[12] DHALI S, PRADHAN M, SAHOO R K, et al. Alleviating Cr (VI) stress in horse gram (Macrotyloma uniflorum Var. Madhu) by native Cr-tolerant nodule endophytes isolated from contaminated site of Sukinda[J]. Environmental Science and Pollution Research International, 2021, 28(24): 31717-31730.

[13] AS A, MN A, MA A, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: a review[J]. Applied Soil Ecology, 2019, 133: 146-159.

[14] ETESAMI H, EMAMI S, ALIKHANI H A. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects a review[J]. Journal of Soil Science & Plant Nutrition, 2017, 17(4): 897-911.

[15] WU S C, CHEUNG K C, LUO Y M, et al. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea[J]. Environ Pollut, 2006, 140(1): 124-135.

[16] 周婷. 速效磷对根际促生溶磷菌和解钾菌溶镉作用的影响及机制[D]. 广州: 暨南大学, 2018.

[17] SUBRAHMANYAM G, SHARMA R K, KUMAR G N, et al. Vigna radiata var. GM4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium Enterobacter sp. C1D in Cr (VI)-amended soils[J]. Pedosphere, 2018, 28(1): 144-156.

[18] SINGH N, MARWA N, MISHRA S K, et al. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L[J]. Ecotoxicology and Environmental Safety, 2016, 125: 25-34.

[19] 张莹, 张文莉, 陈小贝, 等. 细菌产铁载体的结构、功能及其研究进展[J]. 中国卫生检验杂志, 2012, 22(9): 2249-2251.

[20] DAHLHEIMER S R, NEAL C R, FEIN J B. Potential mobilization of platinum-group elements by siderophores in surface environments[J]. Environmental Science & Technology, 2007, 41(3): 870-875.

[21] DIMKPA C O, SVATO? A, DABROWSKA P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp[J]. Chemosphere, 2008, 74(1): 19-25.

[22] DOURADO M N, MARTINS P F, QUECINE M C, et al. Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato[J]. Annals of Applied Biology, 2013, 163(3): 494-507.

[23] DIMKPA C O, MERTEN D, SVATO? A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biology and Biochemistry, 2008, 41(1): 154-162.

[24] 姚军朋, 姚拓, 王小利. ACC脱氨酶的应用研究进展与评述[J]. 生物技术, 2010, 20(2): 87-91.

[25] GROBELAK A, KOKOT P, ?WI?TEK J, et al. Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals[J]. Journal of Ecological Engineering, 2018, 19(5): 150-157.

[26] BELIMOV A A, HONTZEAS N, SAFRONOVA V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)[J]. Soil Biology and Biochemistry, 2004, 37(2): 241-250.

[27] BRíGIDO C, NASCIMENTO F X, DUAN J, et al. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea[J]. FEMS Microbiology Letters, 2013, 349(1): 46-53.

[28] OREMLAND R S, STOLZ J F. Arsenic, microbes and contaminated aquifers[J]. Trends in Microbiology, 2005, 13(2): 45-49.

[29] ABOU-SHANAB R, MATHAI P P, SANTELLI C, et al. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species[J]. Ecotoxicology and Environmental Safety, 2020, 195: 1-11.

[30] SINGH P, PATIL Y, RALE V. Biosurfactant production: emerging trends and promising strategies[J]. Journal of Applied Microbiology, 2019, 126(1): 2-13.

[31] JUWARKAR A A, NAIR A, DUBEY K V, et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils[J]. Chemosphere, 2007, 68(10): 1996-2002.

[32] SHENG X F, HE L Y, WANG Q Y, et al. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil[J]. Journal of Hazardous Materials, 2008, 155(1/2): 17-22.

[33] CHEN L, LUO S L, LI X J, et al. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake[J]. Soil Biology and Biochemistry, 2014(68): 300-308.

[34] 胡晓玥, 李多松. 表面活性剂的应用及其对环境的影响[J]. 北方环境, 2011, 23(6): 33-35.

[35] 徐志伟, 尤勤, 孙炳寅. 生物表面活性剂的工业应用[J]. 生物技术, 1995, 5(3): 6-8.

[36] WU Y J, MA L Y, LIU Q Z, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395: 1-11.

[37] PAN F S, LUO S, SHEN J, et al. The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure[J]. Environmental Science and Pollution Research, 2017, 24(10): 9350-9360.

周琳, 梁溢, 赵长菘, 余蓉, 弓婷斌, 苏春丽. 细菌协同植物治理重金属污染作用机制的研究进展[J]. 激光生物学报, 2022, 31(3): 202. ZHOU Lin, LIANG Yi, ZHAO Changsong, YU Rong, GONG Tingbin, SU Chunli. Research Progress on the Mechanism of Bacteria-plants Joint Governance of Heavy Metal Pollution[J]. Acta Laser Biology Sinica, 2022, 31(3): 202.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!