爆破, 2023, 40 (1): 124, 网络出版: 2024-01-22  

高耸冷却塔原地塌落爆破工艺分析

Analysis on Blasting Technology of Insitu Collapse of Highrise Cooling Tower
作者单位
上海消防技术工程有限公司,上海 200080
摘要
为了研究冷却塔原地倒塌爆破工艺,采用有限元软件进行切口模拟分析,用高清摄像头对筒体及人字形立柱变形进行数据采集,针对筒体变形时间、塌落速度、切口闭合变化、筒体扭曲变形后塌落范围情况进行了详细的分析。实践结果表明:冷却塔原地塌落切口设计并不能按常规4等分平均分配,四个区域对等分配易造成整体下座不倒,第四个区域周长(最后引爆)略大第一区域四分之一,四个区域孔内延期时间分别为MS4/MS8/MS8/HS3孔外为MS2; 通过有限元软件模拟筒体产生塌落趋势需要1 s,筒体的开槽口产生闭合需要3 s,筒体空中挤压扭曲触地需要6.8 s,各区域孔内延期时必须在合理时间内完成变形工作,经爆后影像分析测算与模拟时间相同,原地塌落筒体90%在池内,上部圈梁外抛出水池约6 m,对周边制氢站、循环水泵房、钢闸门等设施未造成影响; 未对23 m外天然气埋管造成影响,经测量天然气管网塌落振动值仅2.095 cm/s说明原地塌落爆破技术对于触地减震起到较大作用,能有效控制筒体塌落外抛距离。
Abstract
In order to study the blasting technology of the insitu collapse of a cooling tower,the incision was analyzed by finite element software.Furthermore,a highdefinition camera was used to collect the deformation data of the cylinder body and lambdoid stand columns.Then detailed analysis was carried out for the deformation time of the cylinder,the collapse speed,the change of the incision closure,and the collapse range after the distortion and deformation of the cylinder.The practice results show that the incisions for the insitu collapse of the cooling tower cannot be designed as four equal parts as convention.It is easy for four equally distributed parts to cause the bottom part not to collapse.The perimeter of the fourth area(the last initiated part) is slightly larger than that of the first area by a quarter.The inhole delay times in the four areas are MS4,MS8,MS8 and HS3,respectively,and the outhole delay time is MS2.Through the finite element simulation,it takes 1 second to generate the collapse trend of the cylinder,3 seconds to close the incisions of the cylinder,and 6.8 s for the cylinder to squeeze,twist in the air and touch the ground.The deformation of each area must be completed within a reasonable time.By image analysis and calculation after the explosion,the above simulated times are the same as the actual times.90% of the insitu collapsed cylinder is within the pool,and the upper ring beam is thrown out of the pool by about 6 meters,which does not affect the surrounding hydrogen production station,circulating water pump room,steel gate and other facilities.After measurement,the peak vibration velocity the natural gas pipe is only 2.095 cm/s,indicating no impact on the buried gas pipe 23 meters away.The research shows that the insitu collapse blasting technology can effectively control the collapse touchdown vibrations and the collapse throw distance of the cylinder.
参考文献

[1] 翟国锋,谭 灵.双曲线型冷却塔爆破拆除设计与分析[J].爆破,2012,29(4):8789,139.

[2] ZHAI Guofeng,TAN Ling.Design and analysis of blasting demolition of hyperbolic cooling tower[J].Blasting,2012,29(4):8789,139.(in Chinese)

[3] 江天生,王振毅,蒋跃飞.赤峰元宝山电厂105 m冷却塔爆破拆除[J].爆破,2013,30(3):8890,134.

[4] JIANG Tiansheng,WANG Zhenyi,JIANG Yuefei.Blasting demolition of 105 m cooling tower in Chifeng Yuanbaoshan Power Plant[J].Blasting,2013,30(3):8890,134.(in Chinese)

[5] 费鸿禄,高建军,张超逸,等.冷却塔爆破拆除塔壁触地解体规律研究[J].爆破,2019,36(4):8695.

[6] FEI Honglu,GAO Jianjun,ZHANG Chaoyi,et al.Study on the disintegration law of cooling tower wall in blasting demolition[J].Blasting,2019,36(4):8695.(in Chinese)

[7] 徐鹏飞,唐 英,张英才,等.冷却塔高卸荷槽切口爆破拆除倒塌受力破坏过程研究[J].爆破,2019,36(4):96102,107.

[8] XU Pengfei,TANG Ying,ZHANG Yingcai,et al.Study on collapse and stress failure process of high unloading groove notch blasting demolition of cooling tower[J].Blasting,2019,36(4):96102,107.(in Chinese)

[9] 边作青,张纪云,高帅杰,等.高卸荷槽技术在100 m高冷却塔爆破拆除中的应用[J].现代矿业,2018,34(7):197199.

[10] BIAN Zuoqing,ZHANG Jiyun,GAO shuaijie,et al.Application of high unloading groove technology in blasting demolition of 100 m high cooling tower[J].Modern Mining,2018,34(7):197199.(in Chinese)

[11] 张宝岗,赵明生,余红兵,等.切口角度对冷却塔爆破拆除影响研究[J].爆破,2018,35(1):109115.

[12] ZHANG Baogang,ZHAO Mingsheng,YU Hongbing,et al.Study on the influence of notch angle on blasting demolition of cooling tower[J].Blasting,2018,35(1):109115.(in Chinese)

[13] 刘 辉,曹 娟,刘瑞华.控制爆破技术在双曲线冷却塔爆破拆除中的应用[J].价值工程,2013,32(31):13.DOI:10.14018/j.cnki.cn131085/n.2013.31.081.

[14] LIU Hui,CAO Juan,LIU Ruihua.Application of controlled blasting technology in blasting demolition of hyperbolic cooling tower[J].Value Engineering,2013,32(31):13.DOI:10.14018/j.cnki.cn131085/n.2013.31.081.(in Chinese)

[15] 高文乐,李坤鹏,刘志成,等.减荷槽数量对双曲线冷却塔倒塌效果的影响研究[J].爆破,2020,37(4):116126.

[16] GAO Wenle,LI Kunpeng,LIU Zhicheng,et al.Study on the influence of the number of load reduction slots on the collapse effect of hyperbolic cooling tower[J].Blasting,2020,37(4):116126.(in Chinese)

[17] 白晓阳,樊永利.大型冷却塔控制爆破技术及危害控制研究[J].现代制造技术与装备,2021,57(5):116117.DOI:10.16107/j.cnki.mmte.2021.0389.

[18] BAI Xiaoyang,Fan Yongli.Study on controlled blasting technology and hazard control of large cooling tower[J].Modern Manufacturing Technology and Equipment,2021,57(5):116117.DOI:10.16107/j.cnki.mmte.2021.0389.(in Chinese)

[19] 付天杰,王全杰,刘 刚.123 m双曲线冷却塔控制爆破拆除[J].爆破,2012,29(3):8285.

[20] FU Tianjie,WANG Quanjie,LIU Gang.Controlled blasting demolition of 123 m hyperbolic cooling tower[J].Blasting,2012,29(3):8285.(in Chinese)

[21] 申文胜,李介明,黄立丰,等.冷却塔爆破拆除切口定向窗形状选取的探讨[C]∥中国爆破新技术Ⅲ,2012:733739.

[22] SHEN Wensheng,LI Jieming,HUANG Lifeng,et al.Discussion on the shape selection of notch directional window in blasting demolition of cooling tower[C]∥New Blasting Technology in China III,2012:733739.(in Chinese)

李介明. 高耸冷却塔原地塌落爆破工艺分析[J]. 爆破, 2023, 40(1): 124. LI Jieming. Analysis on Blasting Technology of Insitu Collapse of Highrise Cooling Tower[J]. BLASTING, 2023, 40(1): 124.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!