光学与光电技术, 2022, 20 (5): 1, 网络出版: 2022-10-17  

可调谐F-P谐振腔的研究进展

Research Progress of Tunable F-P Cavity
作者单位
哈尔滨工业大学物理学院, 黑龙江 哈尔滨 150001
摘要
可调谐法布里-珀罗谐振腔目前是在光通信、传感器和激光器等领域被广泛应用的光学器件。按照调谐方式可分为光纤型F-P腔、微机械型F-P腔和电光型F-P腔, 每种均有相应的优点和优势领域。综述了可调谐F-P腔的研究进展, 包括器件结构、性能参数两方面, 并分析了各类可调谐F-P腔器件的性能差异和未来的应用前景。
Abstract
Tunable Fabry Perot resonator is a kind of optical devices widely used optical devices in optical communication, sensing and laser fields. Its tuning methods can be mainly divided into fiber-optic F-P cavity, micro-machine F-P cavity and electro-optic F-P cavity, each of which has corresponding advantages and areas of advantage. In this paper, the development of tunable F-P cavities is reviewed including device structure and performance parameters.In the end, the performance differences and the future directions of tunable F-P cavities is are discussed.
参考文献

[1] Ji X, Fuyin W, Hong L, et al. A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure[J]. Sensors, 2016, 16(5): 620.

[2] 范刘静, 马力, 韩道福, 等. 基于动态法布里-珀罗腔的光纤光栅温度传感[J]. 中国激光, 2012, 39(10): 5.

[3] Chongyu Lin, Hong Luo, Shuidong Xiong, et al. Investigation on a fiber optic accelerometer based on FBG-FP interferometer[P]. Other Conferences, 2014.

[4] Changkun Yu, Jin Cheng, Yangmeng Tian, et al. Fitting algorithm for interferometric spectrum of fiber Fabry-Perot cavity acoustic sensors[C]//. Proceedings of 2019 2nd International Conference of Green Buildings and Environmental Management, 2019: 271-276.

[5] GAO Yingjun, ZHANG Zhilv, ZHAO Zhonghua, et al. Optoelectronic engineering institute, Jinan University, Guangzhou 51 0632, PR CHINA. A new fiber Fabry-Perot cavity sensor[C]// Proceedings of Advanced Materials and Devices for Sensing and Imaging III., 2007: 158-163.

[6] H Grun, T Berer, P Burgholzer, et al. Three-dimensional photoacoustic imaging using fiber-based line detectors [J]. Biomedical. Optics, 2010, 15(2): 021306.

[7] 王岫鑫. 基于微纳光纤法布里—珀罗干涉仪的生物医学光声成像技术[D]. 广州: 暨南大学, 2014.

[8] WEN Hong, 文鸿, LIU Shijie, et al. 一种高口径效率Fabry-Perot谐振腔天线研究[C]// 2017年全国天线年会论文集(下册). 中国电子学会, 2017.

[9] Yi-Fong Lu, Yi-Cheng Lin. A hybrid approach for finite-size Fabry-Pérot antenna design with fast and accurate estimation on directivity and aperture efficiency[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(11): 55-66.

[10] 欧毅, 崔芳, 孙雨南. 微机械FP腔可调谐滤波器在WDM系统中的串扰分析[J]. 光子学报, 2003, 32(9): 1110-1113.

[11] 黄望宗, 刘志强, 李沼云. 基于可调FP腔的光脉冲时域混叠编解码技术研究[J]. 光通信技术, 2017, 41(6): 3.

[12] Franzen D L, Kim E M. Long optical-fiber Fabry-Perot interferometers[J]. Applied Optics, 1981, 20(23): 3991-3992.

[13] Stone J, Stulz L W. Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium and small free spectral ranges[J]. Electronics letters, 1987, 23(15): 781-783.

[14] Cheng X P, Shum P, Tse C H, et al. Novel multiple-frequency Q-switched fiber laser by using chirped fiber Bragg grating Fabry-Perot etalon[C]//Fiber Lasers V: Technology, Systems, and Applications. SPIE, 2008, 6873: 395-404.

[15] Zhou B, Jiang H, Wang R, et al. Optical fiber fiber Fabry-Perot filter with tunable cavity for high-precision resonance wavelength adjustment[J]. Journal of Lightwave Technology, 2015, 33(14): 2950-2954.

[16] Ahmad H, Roslan N A, Zaini M K A, et al. Tunable multiwavelength erbium-doped fiber laser based on in-fiber Fabry-Perot interferometer Fiber Bragg Gratings in linear and ring cavity configurations[J]. Optik, 2022: 169359.

[17] Stone J, Glodis P F, Marcuse D, et al. Large mode-size fibre Fabry-Perot interferometers[J]. Electronics Letters, 1989 , 25(25): 1698-1699.

[18] 刘水华, 许远忠, 方罗珍. 带单模尾纤的 GRIN 透镜型 Fabry-Perot 腔可调谐光滤波器[J]. 光通信研究, 1994 (3): 26-30.

[19] Steinmetz T, Colombe Y, Hunger D, et al. Stable fiber-based Fabry-Pérot cavity[J]. Applied Physics Letters, 2006, 89(11): 111110.

[20] Tang C, Jiang Y. Microlens optical fiber Fabry-Pérot tunable filter[J]. Optical Engineering, 2009, 48(11): 114401.

[21] Hunger D, Steinmetz T, Colombe Y, et al. A fiber Fabry-Perot cavity with high finesse[J]. New Journal of Physics, 2010, 12(6): 065038.

[22] Muller A, Flagg E B, Lawall J R, et al. Ultrahigh-finesse, low-mode-volume Fabry–Perot microcavity[J]. Optics letters, 2010, 35(13): 2293-2295.

[23] Yeh Y, Park S H. Fiber-optic tunable filter with a concave mirror[J]. Optics Letters, 2012, 37(4): 626-628.

[24] Zhang K, Peter Y , ARochette M. Chalcogenide Fabry-Perot fiber tunable filter[J]. IEEE Photonics Technology Letters, 2018, 30(23): 2013-2016.

[25] Amano T, Koyama F, Hino T, et al. Design and fabrication of GaAs-GaAlAs micromachined tunable filter with thermal strain control[J]. Journal of Lightwave Technology, 2003, 21(3): 596-601.

[26] Antila J, Miranto A, M kynen J, et al. MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT[C]. SPIE, 2010, 7680: 76800U.

[27] Lee H K, Kim K S, Yoon E. A wide-range linearly tunable optical filter using Lorentz force[J]. IEEE Photonics Technology Letters, 2004, 16(9): 2087-2089.

[28] Ebermann M, Neumann N, Hiller K, et al. Recent advances in expanding the spectral range of MEMS Fabry-Perot filters[C]//MOEMS and Miniaturized Systems IX. International Society for Optics and Photonics, 2010, 7594: 75940V.

[29] Meinig M, Ebermann M, Neumann N, et al. Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid-and long-wave infrared micro-spectrometers[C]//2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011: 2538-2541.

[30] Mao H, Silva K D, Martyniuk M, et al. MEMS-based tunable Fabry–Perot filters for adaptive multispectral thermal imaging[J]. Journal of Microelectromechanical Systems, 2016, 25(1): 227-235.

[31] 李元元. 微F-P腔可调谐滤波器的设计与工艺制备[D]. 西安: 西安电子科技大学, 2017.

[32] 李元元, 蒙庆华, 陈四 海, 等. 基于 MEMS 技术的 F-P 腔滤波器分析与设计[J]. 传感器与微系统, 2017, 36(08): 69-71+74.

[33] 任浩杰, 侯海港, 朱丽慧, 等. 低电压驱动F-P 腔可调谐滤波器的仿真和设计[J]. 半导体光电, 2020, 41(2): 182-186+216.

[34] Chen P L, Lin K C, Chuang W C, et al. Analysis of a liquid crystal Fabry-Perot etalon filter: A novel model[J]. IEEE Photonics Technology Letters, 1997, 9(4): 467-469.

[35] Endo Y, Saito T, Maeda M. Narrow-bandwidth tunable Ti: LiNbO3 waveguide filter with cascaded Fabry-Perot structure[C]//Optical Fiber Communication Conference. Optica Publishing Group, 2000: WM11

[36] Kim R, Zhang J, Eknoyan O, et al. Fabry-Perot intensity modulator with integrated Bragg reflectors in Ti: LiNbO3 [J]. Electronics Letters, 2005, 41(22): 1.

[37] 符运良, 金国良, 袁一方. 基于法布里-珀罗腔游标式级联可调谐滤波器的研究[J]. 激光杂志, 2003, (5): 18-20.

[38] 于梦. 基于电光法珀腔的超快微波光子学频率测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

[39] 王博宇. 电光调谐的铌酸锂光波导F-P腔研究[D]. 成都: 电子科技大学, 2017.

[40] MENGYUE XU, MINGBO HE, YUNTAO ZHU, et al. Integrated thin film lithium niobate Fabry-Perot modulator[J]. 中国光学快报(英文版), 2021, 19(6): 8-12.

[41] Chang Zhongcan, Luo Zhixiang, et al. Narrow-band tunable optical filters based on cascaded Fabry-Perot cavities[J]. Optics express, 2022, 30(8): 32-38.

靳辰飞, 隋新宇, 丹丽智, 张思琦. 可调谐F-P谐振腔的研究进展[J]. 光学与光电技术, 2022, 20(5): 1. JIN Chen-fei, SUI Xin-yu, DAN Li-zhi, ZHANG Si-qi. Research Progress of Tunable F-P Cavity[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(5): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!