光谱学与光谱分析, 2023, 43 (6): 1667, 网络出版: 2024-01-08  

表面增强拉曼光谱技术在动物源性食品兽药残留检测中的应用

Application Progress of Surface-Enhanced Raman Spectroscopy for Detection Veterinary Drug Residues in Animal-Derived Food
作者单位
1 赤峰学院化学与生命科学学院, 内蒙古 赤峰 024000
2 上海交通大学农业与生物学院食品科学与工程系, 上海 200240
摘要
动物源性食品是人类营养摄入必不可少的食品之一, 兽药被广泛用于动物饲养和疾病防治, 但兽药残留超标等问题对消费者的健康安全构成了严重威胁。 为防止受污染的食品对消费者造成危害, 研发快速有效的兽药残留分析方法非常必要。 表面增强拉曼光谱法(SERS)作为一种痕量的检测方法, 有望能够满足目前动物源性食品高效、 快速、 灵敏的检测需求。 综述了SERS方法在动物源性食品兽药残留检测中的研究进展, 包括肉类(猪肉、 鸡肉、 鸭肉、 鱼肉)、 乳和乳制品及蜂蜜中兽药残留的SERS分析研究。 概述了SERS技术在肉类食品中主要兽药残留的检测应用进展。 家禽肉中的兽药分析包括四环素类药物、 磺胺类药物、 恩诺沙星和激素类等药物; 猪肉中的兽药主要分析了β-受体激动剂、 氯霉素、 左旋咪唑等药物; 鱼肉中的兽药分析了染料类、 磺胺类和氯霉素等药物。 对乳和乳制品中的四环素类、 氨基糖苷类、 青霉素类、 酰胺醇类药物的SERS检测进行了总结讨论。 简述了SERS在蜂蜜中氯霉素类、 四环素类等药物的分析。 对SERS在动物源性食品的研究发展方向和应用前景进行了总结和展望。 虽然SERS作为一种快速、 超灵敏的检测方法, 在分析复杂食品体系中的微量或痕量化合物方面, 尤其是在食品中可能对健康造成危害的禁用和限用化学物质检测方面显示出了巨大的潜力, 具有较好的发展前景, 但依然面临极大的挑战。 突破技术瓶颈, 建立动物源性食品中兽药残留检测的SERS快速分析策略, 开发出兽药残留的现场实时检测方案, 将对食品安全检测监管具有重要意义。
Abstract
Animal-derived food is one of the most essential parts of human nutrient ingestion. Veterinary drugs are vital for farming and are widely used for livestock breeding and disease prevention. However, excessive veterinary drug residue has severely impacted consumers’ health, which also hinders the development of animal-derived food. In such a concern, developing a rapid and effective detecting method is important to avoid adverse effects on consumers’ health. As a trace-level detection method, surface-enhanced Raman spectroscopy (SERS) demonstrates great potential in fulfilling the rapid, effective, and sensitive demands for veterinary drug residue in animal-derived food. This work reviewed the development of the SERS-based detection method for veterinary drug residue in animal-derived food, including meat (i.e., pork, chicken, duck, and fish), dairy products, and honey products. First, this review introduced the development of SERS technology in detecting the primary veterinary drug in meat products. The veterinary drug analysis includes several aspects, for example, tetracycline, sulfonamides, enrofloxacin, hormones in poultry products, β-agonists, chloramphenicol, and levamisole in pork, dye, sulfonamides, chloramphenicol in fish products. Second, the SERS-based detection of tetracycline, aminoglycosides, penicillin, and amide alcohols in dairy products is discussed. Third, this review briefly introduced the use of SERS for chloramphenicol and tetracycline detection in honey products. Finally, the conclusion and the perspectives of the SERS detection technology in animal-derived food are provided. The SERS demonstrates broad interest in the trace-level analysis of complicated chemical components in the food industry, especially suitable for prohibited and restricted chemical substances that may be hazardous to human health, making this technology highly perspective. However, opportunities exist with challenges. Breaking through the key technical bottlenecks, establishing rapid detection strategies for veterinary drug residue in animal-derived food, and developing on-site and real-time detection protocols will be significant in food safety supervision.
参考文献

[1] CHEN Yi-zi, HU Bin(陈一资, 胡 滨). Journal of Food Science and Biotechnology(食品与生物技术学报), 2009, 28(2): 162.

[2] ZHOU Hui, CHEN Yan, CHI Qiu-chi, et al(周 晖, 陈 燕, 迟秋池, 等). Journal of Food Safety and Quality(食品安全质量检测学报), 2019, 10(10): 2889.

[3] Stckel S, Kirchhoff J, Neugebauer U, et al. Journal of Raman Spectroscopy, 2016, 47(1): 89.

[4] Balan V, Mihai C T, Cojocaru F D, et al. Materials, 2019, 12: 2884.

[5] Zheng J, He L. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317.

[6] Fleischmann M P, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.

[7] Kneipp K, Yang W, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.

[8] Wang K, Sun D W, Pu H, et al. Talanta, 2019, 191: 449.

[9] Jiang Y, Sun D W, Pu H, et al. Trends in Food Science & Technology, 2018, 75: 10.

[10] Nilghaz A, Mahdi Mousavi S, Amiri A, et al. Journal of Agricultural and Food Chemistry, 2022, 70(18): 5463.

[11] Wang J, Chen Q, Belwal T, et al. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(3): 2476.

[12] Yan M, Li H, Li M, et al. Journal of Agricultural and Food Chemistry, 2021, 69(47): 14049.

[13] Zhai W, You T, Ouyang X, et al. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(2): 1887.

[14] Whitnall T, Pitts N. Agricultural Commodities, 2019, 9: 96.

[15] SUN Lin, ZHANG Han, DU Yi-ping(孙 琳, 张 涵, 杜一平). Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 39(3): 455.

[16] GUO Yi-qian, WANG Hong-yan, QIN Miao, et al(郭义乾, 王红艳, 秦 苗, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2022, 59(23): 2317001.

[17] Peng Y, Liu M, Chen X, et al. Spectroscopy Letters, 2017, 50(10): 579.

[18] GUO Hong-qing, LIU Mu-hua, YUAN Hai-chao, et al(郭红青, 刘木华, 袁海超, 等). Journal of Food Safety and Quality(食品安全质量检测学报), 2017, 8(1): 169.

[19] LI Yao, LIU Mu-hua, YUAN Hai-chao, et al(李 耀, 刘木华, 袁海超, 等). Journal of Analytical Science(分析科学学报), 2018, 34(3): 367.

[20] TAO Jin-jiang, PAN Gui-gen, LIU Mu-hua, et al(陶进江, 潘桂根, 刘木华, 等). Food & Machinery(食品与机械), 2019, 35(2): 82.

[21] WANG Ting, LIU Mu-hua, YUAN Hai-chao, et al(王 婷, 刘木华, 袁海超, 等). Food Research and Development(食品研究与开发), 2020, 41(2): 135.

[22] Duan N, Qi S, Guo Y, et al. LWT, 2020, 134: 110017.

[23] SHI Si-qian, YANG Fang-wei, YAO Wei-rong, et al(施思倩, 杨方威, 姚卫蓉, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(12): 3759.

[24] XIAO Xiong-feng, SONG Yi-huan, YANG Chang-biao, et al(肖雄枫, 宋移欢, 杨昌彪, 等). Food Science and Technology(食品科技), 2020, 45(12): 318.

[25] Ji W, Yao W. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 144: 125.

[26] Zhang D, You H, Yuan L, et al. Analytical Chemistry, 2019, 91(7): 4687.

[27] ZHAO Jing-chen, HUANG Dan-dan, ZHU Shu-hua(赵静晨, 黄丹丹, 朱树华). Food Science(食品科学), 2020, 41(14): 294.

[28] ZHANG Zi-han, ZHAO Zhi-hui, ZHANG Yuan-yi, et al (张梓涵, 赵志慧, 张苑怡, 等). Science and Technology of Food Industry (食品工业科技), 2019, 40(16): 212.

[29] Chen J, Huang M, Kong L. Applied Surface Science, 2020, 533: 147454.

[30] Li C, Huang Y, Lai K, et al. Food Control, 2016, 65: 99.

[31] Xu T, Wang X, Huang Y, et al. Food Control, 2019, 106: 106720.

[32] Meng F, Ma X, Duan N, et al. Talanta, 2017, 165: 412.

[33] Fan W, Yang S, Gao W, et al. Microchemical Journal, 2021, 169: 106532.

[34] Zhang Y, Huang Y, Zhai F, et al. Food Chemistry, 2012, 135(2): 845.

[35] Zhang Y, Lai K, Zhou J, et al. Journal of Raman Spectroscopy, 2012, 43(9): 1208.

[36] Pei L, Huang Y, Li C, et al. Journal of Nanomaterials, 2014, 2014: 430925.

[37] Yu W, Huang Y, Pei L, et al. Journal of Nanomaterials, 2014, 2014: 796575.

[38] Song J, Huang Y, Fan Y, et al. Nanomaterials, 2016, 6: 175.

[39] Li C, Huang Y, Pei L, et al. Food Analytical Methods, 2014, 7(10): 2107.

[40] Zhang Y, Huang Y, Kang Y, et al. Food Control, 2021, 130: 108367.

[41] Pu H, Zhu H, Xu F, et al. Journal of Raman Spectroscopy, 2022, 53(4): 682.

[42] MA Hai-kuan, HAN Xiao-hong, ZHANG Cai-hua, et al(马海宽, 韩晓红, 张财华, 等). Acta Laser Biology Sinica(激光生物学报), 2014, 23(6): 560.

[43] Pan Y, Fei D, Liu P, et al. Food Analytical Methods, 2021, 14(12): 2642.

[44] Neng J, Tan J, Jia K, et al. Applied Sciences, 2017, 7: 475.

[45] Chen Y, Li X, Yang M, et al. Talanta, 2017, 167: 236.

[46] Shi Q, Huang J, Sun Y, et al. Microchimica Acta, 2018, 185(2): 1.

[47] Dhakal S, Chao K, Huang Q, et al. Sensors, 2018, 18(424): 18020424.

[48] Moreno V, Adnane A, Salghi R, et al. Talanta, 2019, 194: 357.

[49] Jiang Y, Sun D W, Pu H, et al. Talanta, 2019, 197: 151.

[50] Li N, Han S, Zhang C, et al. Analytical Sciences, 2020, 36(8): 935.

[51] Muhammad M, Yan B, Yao G, et al. ACS Applied Nano Materials, 2020, 3(7): 7066.

[52] Barveen N R, Wang T J, Chang Y H. Chemosphere, 2021, 275: 130115.

[53] Li X, Wang X, Wang L, et al. Food Analytical Methods, 2021, 14: 165.

[54] Navratilova P, Borkovcova I, Drackova M, et al. Czech Journal of Food Sciences, 2009, 27(5): 379.

[55] Marques A, Veigas B, Araújo A, et al. Scientific Reports, 2019, 9: 17922.

[56] Wu Z. Food Analytical Methods, 2019, 12(5): 1121.

[57] Liu B, Zheng S, Li H, et al. Talanta, 2022, 237: 122955.

[58] Jiang Y, Sun D W, Pu H, et al. Journal of Food Measurement and Characterization, 2020, 14(6): 3184.

[59] Nguyen A H, Ma X, Park H G, et al. Sensors and Actuators B: Chemical, 2019, 282: 765.

[60] Shi Q, Huang J, Sun Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 197: 107.

[61] Wali L A, Hasan K K, Alwan A M. Plasmonics, 2020, 15(4): 985.

[62] Kebede G, Zenebe T, Disassa H, et al. African Journal of Basic & Applied Sciences, 2014, 6(4): 87.

[63] Wang T, Wang H, Zhu A, et al. Sensors and Actuators B: Chemical, 2021, 346: 130591.

[64] Zhou H, Liang Y, Zhang J, et al. Research on Chemical Intermediates, 2022, 48(1): 117.

[65] Fang Q, Li Y, Miao X, et al. Analyst, 2019, 144(11): 3649.

[66] Hassan M M, He P, Xu Y, et al. Food Chemistry, 2022, 374: 131765.

[67] Valverde S, Ares A M, Stephen Elmore J, et al. Food Chemistry, 2022, 387: 132920.

[68] ZHANG Lu-tao, ZHOU Guang-ming, LUO Dan, et al(张璐涛, 周光明, 罗 丹, 等). Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 39(8): 1662.

[69] Xiao D, Jie Z, Ma Z, et al. Microchimica Acta, 2020, 187: 593.

[70] Wang X, Chen C, Waterhouse G I N, et al. Food Chemistry, 2021, 362: 130261.

[71] Yan S, Li Y, Peng Y, et al. Journal of Food Science, 2022, 87(7): 3318.

李春颖, 王红义, 李永春, 李静, 陈高乐, 樊玉霞. 表面增强拉曼光谱技术在动物源性食品兽药残留检测中的应用[J]. 光谱学与光谱分析, 2023, 43(6): 1667. LI Chun-ying, WANG Hong-yi, LI Yong-chun, LI Jing, CHEN Gao-le, FAN Yu-xia. Application Progress of Surface-Enhanced Raman Spectroscopy for Detection Veterinary Drug Residues in Animal-Derived Food[J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 1667.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!