微电子学, 2022, 52 (1): 28, 网络出版: 2022-06-14  

一种S波段E类GaN HEMT功率放大器设计

Design of a S-Band Class-E GaN HEMT Power Amplifier
作者单位
河南科技大学 电气工程学院, 河南 洛阳 471023
摘要
并联电路E类功率放大器(PA)具有结构简单和高效的优点, 因而被广泛应用。针对并联电路E类PA存在带宽较窄、效率较低的问题, 对其输出匹配网络提出了一种改进方案。采用混合式π型结构作为PA的输出匹配网络, 在较宽的工作带宽内完成了最佳阻抗与标准阻抗的转换, 有效地抑制了二次谐波分量, 提高了电路的效率。为了验证所提出理论的有效性, 基于0.25 μm GaN HEMT工艺设计了一种结构简单、高效率和高功率的单片集成E类功率放大器。版图后仿真结果表明, 在2.5~3.7 GHz工作频率范围内, 输出功率大于40 dBm, 功率附加效率为51.8%~63.1%。版图尺寸为2.4 mm×2.9 mm。
Abstract
Since the parallel-circuit class-E power amplifier (PA) has the advantages of simple structure and high efficiency, it has been widely used in many applications. To solve the problem of narrow bandwidth and low efficiency of the parallel-circuit class-E PA, an improved technology for its output matching network was proposed in this paper. A hybrid π-type structure was used as the output matching network of the PA, which not only performed the conversion between the best impedance and the standard impedance within a wide working bandwidth, but also effectively suppressed the second harmonic component, in turn to improve the circuit’s efficiency. In order to verify the validity of the proposed theory, based on a 0.25 μm GaN HEMT process, a monolithic-integrated class-E power amplifier with simple structure, high efficiency and high power was designed in this paper. The post-layout simulation results showed that the output power was greater than 40 dBm, and the power-added efficiency was 51.8% to 63.1% in the 2.5~3.7 GHz operating frequency range. The size of layout was 2.4 mm×2.9 mm.
参考文献

[1] CHEN P, HE S, WANG X, et al. 1.7/2.6 GHz high-efficiency concurrent dual-band power amplifier with dual-band harmonic wave controlled transformer [J]. Elec Lett, 2014, 50(3): 184-185.

[2] SHI W, HE S, LI Q. A series of inverse continuous modes for designing broadband power amplifiers [J]. IEEE Microw Wirel Compon Lett, 2016, 26(7): 525-527.

[3] PANG J, HE S, HUANG C, et al. A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits [J]. IEEE Microw Wirel Compon Lett, 2016, 26(2): 137-139.

[4] LI Y, ZHANG Z, NEIHART N M. Switchless compact dual-band matching networks for class-E power amplifiers [J]. Analog Integr Circ Signal Process, 2016, 88(2): 207-221.

[5] LIU C, CHENG Q F. A novel compensation circuit of high-efficiency concurrent dual-band class-E power amplifiers [J]. IEEE Microw Wirel Compon Lett, 2018, 28(8): 720-722.

[6] SOKAL N O, SOKAL A D. Class E - a new class of high-efficiency tuned single-ended switching power amplifiers [J]. IEEE J Sol Sta Circ, 1975, 10(3): 168-176.

[7] GREBENNIKOV A. Switched-mode RF and microwave parallel-circuit class E power amplifiers [J]. Int J RF Microw Comput-Aided Engineer, 2004, 14(1): 21-35.

[8] ALINIKULA P, CHOI K, LONG S I. Design of class E power amplifier with nonlinear parasitic output capacitance [J]. IEEE Trans Circ Syst Ⅱ: Analog Digital Signal Process, 1999, 46(2): 114-119.

[9] SHI W, HE S, LI Q, et al. Design of broadband power amplifiers based on resistive-reactive series of continuous modes [J]. IEEE Microw Wirel Compon Lett, 2016, 26(7): 519-521.

[10] AMIRPOUR R, DARRAJI R, GHANNOU- CHI F, et al. Enhancement of the broadband efficiency of a class-J power amplifier with varactor-based dynamic load modulation [J]. IEEE Microw Wirel Compon Lett, 2017, 27(2): 180-182.

[11] ZHENG S Y, LIU Z W, ZHANG X Y, et al. Design of ultra-wideband high-efficiency extended continuous class-F power amplifier [J]. IEEE Trans Indus Elec, 2018, 65(6): 4661-4669.

[12] CHEN K, PEROULIS D. Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks [J]. IEEE Trans Microw Theo Tech, 2011, 59(12): 3162-3173.

[13] SAAD P, FAGER C, CAO H Y, et al. Design of a highly efficient 2~4 GHz octave bandwidth GaN-HEMT power amplifier [J]. IEEE Trans Microw Theo Tech, 2010, 58(7): 1677-1685.

[14] KUMAR N, PRAKASH C, GREBENNIKOV A, et al. High-efficiency broadband parallel- circuit class E RF power amplifier with reactance-compensation technique [J]. IEEE Trans Microw Theo Tech, 2008, 56(3): 604-612.

[15] LENG Y, ZENG Y, ZHANG L, et al. An extended topology of parallel-circuit class-E power amplifier using transmission-line compensation [J]. IEEE Trans Microw Theo Tech, 2013, 61(4): 1628-1638.

[16] MERTENS K L R, STEYAERT M S J. A 700-MHz 1-W fully differential CMOS class-E power amplifier [J]. IEEE J Sol Sta Circ, 2002, 37(2): 137-141.

[17] NINH D D, NAM H V, KIM H, et al. Design of a highly efficient broadband class-E power amplifier with a low Q series resonance [J]. J Electromag Engineer Sci, 2016, 16(3): 143-149.

[18] KAZIMIERCZU K, MARIAN K. Class E zero voltage switching RF power amplifiers [M]. New York: John Wiley & Sons, Ltd, 2014: 243-309.

[19] GREBENNIKOV A. 射频与微波功率放大器设计 [M]. 张玉兴, 赵宏飞, 译. 北京: 电子工业出版社, 2006.

[20] NEGRA R, BACHTOLD W. Lumped-element load- network design for class-E power amplifiers [J]. IEEE Trans Microw Theo Tech, 2006, 54(6): 2684-2690.

[21] 张双林. 混合式π型阻抗匹配网络设计 [J]. 电子机械工程, 1991(1): 1-6.

[22] 刘世中, 桑磊. S波段GaN MMIC功率放大器的设计 [J]. 微电子学, 2018, 48(6): 47-51.

[23] YOON H, YOOK J, KIM J C, et al. A broadband RLC matched GaN power amplifier using interposer-MMIC technology [J]. Microw Optical Tech Lett, 2020, 62(5): 1976-1980.

王德勇, 张盼盼, 张金灿, 刘敏, 刘博, 孙立功. 一种S波段E类GaN HEMT功率放大器设计[J]. 微电子学, 2022, 52(1): 28. WANG Deyong, ZHANG Panpan, ZHANG Jincan, LIU Min, LIU Bo, SUN Ligong. Design of a S-Band Class-E GaN HEMT Power Amplifier[J]. Microelectronics, 2022, 52(1): 28.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!