硅酸盐学报, 2022, 50 (3): 839, 网络出版: 2022-11-11  

共聚甲醛纤维超高性能混凝土高温后残余力学性能

Residual Mechanical Properties of Ultra-High Performance Concrete Doped with Copolymer Formaldehyde Fiber Exposed to High Temperature
作者单位
1 重庆交通大学材料科学与工程学院, 重庆 400074
2 重庆交通大学土木工程学院, 重庆 400074
摘要
研究了掺入6、8、12 mm共聚甲醛纤维及钢纤维的超高性能混凝土(UHPC)高温后残余力学性能及微观结构。结果表明: 400 ℃时, 仅素混凝土发生爆裂; 500 ℃时单掺钢纤维UHPC试件发生爆裂, 单掺共聚甲醛纤维及混掺2种纤维的UHPC试件仍能保持相对完整, 后者高温残余强度较高。UHPC中共聚甲醛纤维在高温蒸汽养护后, 能与基体紧密黏接, 165 ℃后纤维熔化形成的孔洞能有效缓解并释放蒸汽压, 保持混凝土基体完整, 防止其在500 ℃发生高温爆裂。本工作揭示了共聚甲醛纤维在混凝土高温性能方面的作用机理, 对其在UHPC中应用有参考价值。
Abstract
The residual mechanical properties and microstructure of UHPC mixed with 6, 8, 12 mm copolymer formaldehyde fiber and steel fiber after high temperature were studied. The test results show that at 400 ℃, only plain concrete bursts. At 500 ℃, the steel fiber UHPC specimen burst, while the UHPC specimen with single copolymer formaldehyde fiber and mixed with two kinds of fiber can still maintain relatively integrity, and the latter has higher residual strength at high temperature. SEM and pore structure show that the copolymer formaldehyde fiber in UHPC can be closely bonded to the matrix after steam curing at high temperature. The pore formed by fiber melting at 165 ℃ can effectively relieve and release steam pressure, keep the concrete matrix intact and prevent it from cracking at 500 ℃. The research results reveal the mechanism of the copolymer formaldehyde fiber on the high temperature performance of concrete, which has great reference value for its application in UHPC.
参考文献

[1] POON C S, AZHAR S, ANSON M, et al. Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures[J]. Cem Concr Res, 2001, 31(9): 1291-1300.

[2] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述[J]. 材料导报, 2017, 31(23): 17-23.

[3] 朋改非, 杨娟, 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017, 50(4): 73-79.

[4] KLINGSCH E W, FRANGI A, FONTANA M. High-and ultrahigh- performance concrete: A systematic experimental analysis on spalling [J]. Aci Spec Publ, 2011.

[5] HERTZ K. Heat-Induced Explosion of Dense Concretes[M]. Denmark: Institute of Building Design, Technical University of Denmark, 1984

[6] 雪凯旺, 苗苗, 周健. 高强混凝土高温爆裂行为改善措施的研究进展[J]. 硅酸盐通报, 2016, 35(10): 3209-3214.

[7] 牛旭婧, 乜颖, 朋改非, 等. 养护制度对超高性能混凝土抗高温爆裂性能的影响[J]. 硅酸盐学报, 2020, 48(8): 1212-1222.

[8] 杨娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018, 35(6): 1599-1608.

[9] HAN C G, HAN M C, HEO Y S. Improvement of residual compressive strength and spalling resistance of high-strength RC columns subjected to fire[J]. Constr Building Mater, 2009, 23(1): 107- 116.

[10] 牛旭婧, 赵庆新, 陈天红. 聚丙烯粗纤维对高强混凝土高温后性能影响[J]. 硅酸盐通报, 2013, 32(12): 2583-2588.

[11] LIANG X W, WU C Q, YANG Y K, et al. Experimental study on ultra-high performance concrete with high fire resistance under simultaneous effect of elevated temperature and impact loading[J]. Cem Concr Compos, 2019, 98: 29-38.

[12] 邓国旗. 活性粉末混凝土高温后性能及超声评估的研究[D]. 长沙:湖南大学, 2017.

[13] 安宇坤, 王亚涛, 李建华. 聚甲醛纤维混凝土抗收缩与抗渗透性研究[J]. 混凝土世界, 2019(3): 64-67.

[14] 吕锦飞. 聚甲醛纤维混凝土性能研究[D]. 扬州: 扬州大学, 2019.

[15] 中华人民共和国住房和城乡建设部. GB/T 31387—2015活性粉末混凝土[S].

[16] SUN B, LIN Z X. Investigation on spalling resistance of ultra- high-strength concrete under rapid heating and rapid cooling[J]. Case Studies Constr Mater, 2016, 4: 146-153.

[17] 杨婷, 刘中宪, 杨烨凯, 等. 超高性能混凝土高温后性能试验研究[J]. 土木与环境工程学报, 2020, 42(3): 115-126.

[18] 高宇剑. 高强混凝土火灾后力学性能退化及高温爆裂机理研究[D]. 徐州: 中国矿业大学, 2014.

[19] 吕锦飞, 杨鼎宜, 李玉寿, 等. 热-力耦合作用下混凝土劣化特性及其损伤本构模型的研究[J]. 硅酸盐通报, 2018, 37(12): 3877-3882.

何越骁, 黄维蓉, 郭江川, 陈行, 晏茂豪, 王娇. 共聚甲醛纤维超高性能混凝土高温后残余力学性能[J]. 硅酸盐学报, 2022, 50(3): 839. HE Yuexiao, HUANG Weirong, GUO Jiangchuan, CHEN Hang, YAN Maohao, WANG Jiao. Residual Mechanical Properties of Ultra-High Performance Concrete Doped with Copolymer Formaldehyde Fiber Exposed to High Temperature[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 839.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!