硅酸盐学报, 2022, 50 (11): 2886, 网络出版: 2023-01-27  

三乙醇胺和快硬硫铝酸盐水泥对盾构壁后注浆浆体性能的影响

Influence of Triethanolamine and Rapid Hardening Sulfoaluminate Cement on Performance of Backfill Grouting in Shield Engineering
作者单位
1 河海大学土木与交通学院, 南京 210024
2 河海大学力学与材料学院, 南京 211100
3 中交隧道工程局有限公司, 北京 100102
4 华设设计集团股份有限公司, 南京 210014
摘要
针对盾构壁后注浆浆体(浆体)须具有较短凝结时间并保持良好流动性的难题, 以快硬硫铝酸盐水泥(R·SAC)和三乙醇胺(TEA)为外加速凝材料, 分析两者对浆体性能影响规律及微观机制。结果表明, 随R·SAC替换P.O水泥至50%, 浆体凝结时间从9.5 h降低至2.0 h, 但150 min流动度损失约50%; TEA以0.6%掺量为拐点, 浆体凝结时间和流动度均先增大后减小; 复掺情况下, 两者对浆体水化具有协同作用, 起始期快速水化, 凝结时间缩短, TEA解絮作用提高了浆体流动性, 减缓流动度经时损失; 复掺15% R·SAC和0.05% TEA, 可制备出凝结时间6 h、150 min流动度250 mm的快凝高流动性浆体。
Abstract
Aiming at the problem that the backfill grouting of the shield project must have a short setting time and maintain good fluidity, Rapid hardening sulfoaluminate cement (R·SAC) and triethanolamine (TEA) are used as external accelerated setting materials, Analysis of the influence law and microscopic mechanism of the two on grout properties. The results show that with the increase of R·SAC, the setting time of the grout decreases from 9.5 h to 2.0 h, but the fluidity loss at 150 min is about 50%; With 0.6% dosage of TEA as the inflection point, the setting time and fluidity of the grout both increased first and then decreased; In compound blending, The two have a synergistic effect on grout hydration, rapid hydration in the initial stage, shortened setting time, and TEA deflocculation improves grout fluidity and slows down the loss of fluidity over time; By adding 15% R·SAC and 0.05% TEA, a fast-setting and high-fluidity backfill with a setting time of 6 h and a fluidity of 250 mm in 150 min can be prepared.
参考文献

[1] WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunn Undergr Sp Technol, 2015, 31: 20-32.

[2] AZADI M, POURAKBAR S, KASHFI A. Assessment of optimum settlement of structure adjacent urban tunnel by using neural network methods[J]. Tunn Undergr Sp Technol, 2013, 37: 1-9.

[3] LAI J X, ZHOU H, WANG K, et al. Shield-driven induced ground surface and Ming dynasty city wall settlement of Xi’an metro[J]. Tunn Undergr Sp Technol, 2020, 97: 1-17.

[4] LIAO S M, LIU J H, WANG R L, et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunn Undergr Sp Technol, 2009, 24: 454-465.

[5] ZHANG N, SHEN J S, ZHOU A N, et al. Tunneling induced geohazards in mylonitic rock faults with rich groundwater: A case study in Guangzhou[J]. Tunn Undergr Sp Technol, 2018, 74: 262-272.

[6] BEZUIJEN A, TALMON A M. Grout, the foundation of a bored tunnel[C]//Proceedings of the BGA International Conference on Foundations: Innovations, Observations, Design and Practice, Scotland, British, 2003: 9-13.

[7] WANG S M, HE C, NIE L, et al. Study on the long-term performance of cement-sodium silicate grout and its impact on segment lining structure in synchronous backfill grouting of shield tunnels[J]. Tunn Undergr Sp Technol, 2019, 92: 0886-7798.

[8] 梁精华. 盾构隧道壁后注浆材料配比优化及浆体变形特性研究[D]. 南京: 河海大学, 2006.

[9] 周恒. 城市地铁衬砌壁后防渗注浆材料研发与应用[D]. 济南: 山东大学, 2020.

[10] MAO J H, YUAN D J, JIN D L, et al. Optimization and application of backfill grouting material for submarine tunnel[J]. Constr Build Mater, 2020, 265(30): 0950-0618.

[11] MARIE J, NATHALIE A, GWENN L S, et al. Influence of triethanolamine on cement pastes at early age of hydration[J]. Adv Cem Res, 2018, 30(4): 159-171.

[12] 魏雪斐, 段云岭, 史小萌, 等. 海下石油储库硫铝酸盐水泥注浆材料研究[J]. 岩石力学与工程学报, 2019, 38(S1): 3045-3052.

[13] 楚宇扬, 徐金涛, 刘烨, 等. 快硬硫铝酸盐水泥在3D打印材料中的应用[J]. 建筑材料学报, 2021, 24(5): 930-936.

[14] GAO D Y, CHE Q F, MENG Y, et al. Properties evolution of calcium sulfoaluminate cement blended with ground granulated blast furnace slag suffered from sulfate attack[J]. J Mater Res Technol, 2022, 17: 1642-1651.

[15] 柯蓝. 高性能灌浆料的试验研究[D]. 北京: 北方工业大学, 2012.

[16] WANG L, MA H, LI Z J, et al. Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing[J]. Addit Manuf, 2021, 46: 2214-8604.

[17] 杨清, 张秀芝, 刘迪, 等. 普通硅酸盐-硫铝酸盐复合胶凝体系水化性能和机理研究[J]. 材料导报, 2018, 32(S2): 517-521, 534.

[18] 赵青, 张艺霞, 赵军, 等. 速凝抗水分散型水泥基注浆材料的制备及性能研究[J]. 功能材料, 2020, 51(6): 6114-6119.

[19] 常钧, 张洋洋, 尚小朋, 等. AH3及水化程度对硫铝酸盐水泥强度的影响[J]. 建筑材料学报, 2016, 19(6): 1028-1032.

[20] 王培铭, 李楠, 徐玲琳, 等. 低温养护下硫铝酸盐水泥的水化进程及强度发展[J]. 硅酸盐学报, 2017, 45(2): 242-248.

[21] 王轶. 高性能湿接缝混凝土与钢筋粘结锚固性能的试验研究[D]. 南京: 东南大学, 2021.

[22] 张洋洋, 常钧, 赵九野. 硫铝酸钙-二水石膏-氢氧化钙-水水化系统的热力学计算[J]. 硅酸盐学报, 2017, 45(5): 657-661.

[23] 何廷树, 李红艳, 何蕊, 等. 不同醇胺对硫酸铝基无碱液体速凝剂性能的影响研究[J]. 硅酸盐通报, 2019, 38(9): 2707-2712.

[24] LIU H, LIN H, LIU X Y, et al. Effects of triethanolamine on autogenous shrinkage and drying shrinkage of cement mortar[J]. Constr Build Mater, 2021, 304(18): 0950-0618.

[25] 史懿, 龙广成, 贺炯煌, 等. TEA对水泥-粉煤灰体系水化进程与强度的影响机制[J]. 硅酸盐通报, 2020, 39(4): 1077-1084.

[26] 唐晓博, 孙振平, 刘毅. 三乙醇胺助磨剂对水泥与聚羧酸系减水剂适应性的影响及其机理[J]. 材料导报, 2018, 32(4): 641-645.

[27] 徐建平, 林文书, 许可, 等. 盾构隧道快硬高性能同步注浆材料研究[J]. 隧道建设, 2014, 34(2): 95-100.

[28] 于建军, 张晓平, 孙长征. 早强剂复配和砂的级配对超早强灌浆料性能影响[J]. 沈阳建筑大学学报, 2014, 30(2): 298-304.

[29] 韩晓龙, 陈新明, 焦华喆, 等. 聚合物-水泥基复合注浆材料研究现状及展望[J]. 硅酸盐通报, 2018, 37(8): 2457-2462.

[30] 孔祥明, 路振宝, 闫娟, 等. TEA对水化过程中水泥浆体液相离子浓度的影响[J]. 硅酸盐学报, 2013, 41(7): 981-986.

[31] 李强强. 高铁用醇胺类早强剂对水泥石力学性能及微观结构的影响[D]. 北京: 北京交通大学, 2019.

[32] LU Z C, KONG X M, JANSEN D, et al. Towards a further understanding of cement hydration in the presence of triethanolamine[J]. Cem Concr Res, 2020, 132: 106041.

[33] ZHANG Y R, KONG X M, LU Z C, et al. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism[J]. Cem Concr Res, 2016, 87: 64-76.

[34] HE Y, LIU S H, ZHANG X, et al. Influence of triethanolamine on mechanical strength and hydration performance of blended cement containing fly ash, limestone and slag[J]. J Build, 2021, 44: 2352-7102.

宋帮红, 闵凡路, 张建峰, 李明清, 张亚洲, 方忠强, 张雷, 赵小鹏. 三乙醇胺和快硬硫铝酸盐水泥对盾构壁后注浆浆体性能的影响[J]. 硅酸盐学报, 2022, 50(11): 2886. SONG Banghong, MIN Fanlu, ZHANG Jianfeng, LI Mingqing, ZHANG Yazhou, FANG Zhongqiang, ZHANG Lei, ZHAO Xiaopeng. Influence of Triethanolamine and Rapid Hardening Sulfoaluminate Cement on Performance of Backfill Grouting in Shield Engineering[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2886.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!