硅酸盐通报, 2023, 42 (6): 2251, 网络出版: 2023-11-20  

煤气化渣合成4A分子筛及其吸附性能研究

Preparation of 4A Molecular Sieve from Coal Gasification Slag and Its Adsorption Performance
徐啟斌 1,2,*牛香力 1,2陈婷婷 1,2陈雨欣 1,2李杨 1,2张华 1,2倪红卫 1,2
作者单位
1 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室, 武汉 430081
2 湖北省冶金二次资源工程技术研究中心, 武汉 430081
摘要
本文针对煤气化渣(CGFS)资源化利用困难的问题, 以CGFS为原料, 采用碱熔活化-水浸-水热法合成4A分子筛。在水钠比(n(H2O)/n(Na2O), 摩尔比)为80、硅铝比(n(SiO2)/n(Al2O3), 摩尔比)为2的条件下, 探讨了反应时间、水热温度和前驱液老化对合成的4A分子筛物相结构和微观形貌的影响, 提出了活化CGFS-P1分子筛-4A分子筛快速高效的转晶合成机理, 并利用硫酸铜溶液模拟含重金属离子工业废水, 测试了制备的4A分子筛对Cu2+的吸附性。结果表明, 在100 ℃反应12 h条件下能够制备出尺寸均一且结晶良好的4A分子筛, 其对Cu2+的吸附主要发生在前10 min, 吸附率达69.7%, 90 min时的最大吸附率高达97.3%, 饱和吸附容量为196.4 mg/g, 制备的4A分子筛表现出良好的吸附性能, 为CGFS高值化利用提供了理论依据和试验基础。
Abstract
In order to solve the difficult problem of comprehensive utilization of coal gasification slag (CGFS), 4A molecular sieve was synthesized with CGFS as raw material by an alkali fusion-water leaching-hydrothermal method. Under the conditions that the molar ratio of water to sodium (n(H2O)/n(Na2O)) is 80 and the molar ratio of silicon to aluminum (n(SiO2)/n(Al2O3)) is 2, the effects of reaction time, hydrothermal temperature and precursor aging time on the phase structure and microstructure of prepared 4A molecular sieve were investigated. The phase transformation and synthesis mechanism for activated CGFS-P1 molecular sieve-4A molecular sieve were proposed. Meanwhile, the adsorption performance of the prepared 4A molecular sieve for Cu2+ in the solution was tested by using copper sulfate solution to simulate industrial wastewater containing heavy metal ions. The results show that 4A molecular sieve with uniform size and well crystallization could be prepared at 100 ℃ for 12 h. The adsorption of Cu2+ by 4A molecular sieve mainly occurrs in the initial 10 min and the adsorption rate reaches 69.7%. The saturated adsorption rate reaches 97.3% in 90 min and the saturated adsorption capacity is 196.4 mg/g. It is indicated that the prepared 4A molecular sieve exhibits good adsorption performance, which provides the theoretical and experimental foundation for the high value-added utilization of CGFS.
参考文献

[1] ZHOU J M, ZHENG F, LI H, et al. Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance[J]. Chemical Engineering Journal, 2020, 381: 122698.

[2] 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2015: 58-159.

[3] MUSYOKA N M, PETRIK L F, HUMS E, et al. Thermal stability studies of zeolites A and X synthesized from South African coal fly ash[J]. Research on Chemical Intermediates, 2015, 41(2): 575-582.

[4] XU R. Chemistry of zeolites and related porous materials: synthesis and structure[M]. Singapore: John Wiley & Sons, 2007.

[5] GARCA G, AGUILAR M W, CARABANTE I, et al. Preparation of zeolite A with excellent optical properties from clay[J]. Journal of Alloys and Compounds, 2015, 619: 771-777.

[6] WANG J Q, HUANG Y X, PAN Y M, et al. Hydrothermal synthesis of high purity zeolite A from natural kaolin without calcination[J]. Microporous and Mesoporous Materials, 2014, 199: 50-56.

[7] MAIA A  B, NEVES R F, ANGLICA R S, et al. Synthesis, optimisation and characterisation of the zeolite NaA using kaolin waste from the Amazon Region. Production of zeolites KA, MgA and CaA[J]. Applied Clay Science, 2015, 108: 55-60.

[8] GHOSH B, AGRAWAL D C, BHATIA S. Synthesis of zeolite A from calcined diatomaceous clay: optimization studies[J]. Industrial & Engineering Chemistry Research, 1994, 33(9): 2107-2110.

[9] ZHAO Y F, ZHANG B, ZHANG X, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 658-664.

[10] QIAN T T, LI J H. Synthesis of Na-a zeolite from coal gangue with the in situ crystallization technique[J]. Advanced Powder Technology, 2015, 26(1): 98-104.

[11] YUSOF A M, AHMAD NIZAM N, RASHID N A A. Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites[J]. Journal of Porous Materials, 2010, 17(1): 39-47.

[12] SU S Q, MA H W, CHUAN X Y. Hydrothermal synthesis of zeolite A from K-feldspar and its crystallization mechanism[J]. Advanced Powder Technology, 2016, 27(1): 139-144.

[13] LIU L J, JI W X, LI K N, et al. Solid phase ZSM-5 synthesis from coal gasification coarse slag[J]. Silicon, 2022, 14(14): 8855-8868.

[14] 王 正. 煤气化渣制备单相Y型分子筛及其对废水中Cr6+的吸附研究[D]. 银川: 宁夏大学, 2022.

[15] WU Y H, XUE K, MA Q L, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2021, 312: 110742.

[16] SHU R, QIAO Q X, GUO F Q, et al. Controlled design of Na-P1 zeolite/porous carbon composites from coal gasification fine slag for high-performance adsorbent[J]. Environmental Research, 2023, 217: 114912.

[17] GUO Q H, LI H, WANG S M, et al. Experimental study on preparation of oxygen reduction catalyst from coal gasification residual carbon[J]. Chemical Engineering Journal, 2022, 446: 137256.

[18] 王守飞. 粉煤气化灰渣制备泡沫陶瓷保温建筑材料[D]. 淮南: 安徽理工大学, 2019.

[19] 梁丽萍, 高 飞, 力国民, 等. 负载磁性合金的多孔陶瓷复合吸波材料制备方法: CN111817020B[P]. 2021-10-15.

[20] 司玉成, 吴 涛. 陕西某矿区煤泥制备4A分子筛的试验研究[J]. 化学工程师, 2021, 35(11): 5-8.

[21] 胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.

[22] LI H, ZHENG F, WANG J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390: 124513.

[23] 孔德顺, 吴 红, 连明磊. 高铁含量煤矸石制备4A分子筛的研究[J]. 硅酸盐通报, 2019, 38(9): 2999-3003.

[24] LIU X P, WANG R. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite[J]. Journal of Hazardous Materials, 2017, 326: 157-164.

[25] TABIT K, WAQIF M, SADI L. Application of the Taguchi method to investigate the effects of experimental parameters in hydrothermal synthesis of Na-P1 zeolite from coal fly ash[J]. Research on Chemical Intermediates, 2019, 45(9): 4431-4447.

[26] 孔德顺, 籍永华, 秦丙克, 等. NaP沸石分子筛的合成及软化硬水的实验研究[J]. 中国陶瓷, 2013, 49(3): 24-26+47.

[27] GENG H L, LI G, LIU D, et al. Rapid and efficient synthesis of CHA-type zeolite by interzeolite conversion of LTA-type zeolite in the presence of N, N, N-trimethyladamantammonium hydroxide[J]. Journal of Solid State Chemistry, 2018, 265: 193-199.

[28] REN X, QU R, LIU S, et al. Synthesis of zeolites from coal fly ash for the removal of harmful gaseous pollutants: a review[J]. Aerosol and Air Quality Research, 2020, 20(5): 1127-1144.

[29] REN X Y, LIU S J, QU R Y, et al. Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption[J]. Microporous and Mesoporous Materials, 2020, 295: 109940.

[30] BAERLOCHER C H, MCCUSKER L B. Database of zeolite structures[EB/OL]. [2022-11-5]. http://www.iza-structure.org/databases/.

[31] 吴勤明, 王叶青, 孟祥举, 等. 硅铝沸石分子筛晶化过程再思考[J]. 高等学校化学学报, 2021, 42(1): 21-28.

徐啟斌, 牛香力, 陈婷婷, 陈雨欣, 李杨, 张华, 倪红卫. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251. XU Qibin, NIU Xiangli, CHEN Tingting, CHEN Yuxin, LI Yang, ZHANG Hua, NI Hongwei. Preparation of 4A Molecular Sieve from Coal Gasification Slag and Its Adsorption Performance[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2251.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!