硅酸盐学报, 2023, 51 (8): 2098, 网络出版: 2023-10-07  

溶剂交换对水泥基材料微结构的影响

Effect of Solvent Exchange on Microstructure of Cement-Based Materials - A Short Review
作者单位
哈尔滨工业大学交通科学与工程学院,哈尔滨 150000
摘要
溶剂交换法广泛应用于水泥基材料的干燥和终止水化中。本文综述了溶剂交换对水泥浆体显微结构的影响。阐述了交换参数(样品尺寸、液-固比、交换时间和去除方法)的选取原则。重点论述了常见交换溶剂(异丙醇、丙酮、甲醇和乙醇)与水泥水化产物(氢氧化钙、水化硅酸钙和钙矾石)之间存在的物理化学反应。在交换参数和溶剂的影响下,对比分析了水泥基材料的孔结构参数(孔隙率和孔径分布)。最后提出了溶剂交换方法目前存在的问题及研究展望。
Abstract
Solvent exchange method is widely used in the drying and hydration termination of cement-based materials. This review represented the influence of solvent exchange on the microstructure of cement paste. The selection principle of exchange parameters (i.e., sample size, liquid/solid ratio, exchange time and removal method) was described. The physical and chemical reactions between common exchange solvents (i.e., isopropanol, acetone, methanol, and ethanol) and cement hydration products (i.e., calcium hydroxide, calcium silicate hydrate and ettringite) were discussed. The pore structure parameters (i.e., porosity and pore size distribution) of cement-based materials were analyzed under the influence of exchange parameters and solvents. In addition, the existing problems and research prospects of the solvent exchange method were also given.
参考文献

[1] FELDMAN R, SEREDA P. A new model for hydrated Portland cement and its practical implications[J]. Eng J, 1970, 53: 53-59.

[2] COLLIER N C, SHARP J H, MILESTONE N B, et al. The influence of water removal techniques on the composition and microstructure of hardened cement pastes[J]. Cem Concr Res, 2008, 38(6): 737-744.

[3] ZHANG Z D, SCHERER G W. Evaluation of drying methods by nitrogen adsorption[J]. Cem Concr Res, 2019, 120: 13-26.

[4] GAJEWICZ-JAROMIN A M, MCDONALD P J, MULLER A C A, et al. Influence of curing temperature on cement paste microstructure measured by 1H NMR relaxometry[J]. Cem Concr Res, 2019, 122: 147-156.

[5] LUO S Q, LIU M, YANG L, et al. Effects of drying techniques on the crystal structure and morphology of ettringite[J]. Constr Build Mater, 2019, 195: 305-311.

[6] BEDE A, SCURTU A, ARDELEAN I. NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions[J]. Cem Concr Res, 2016, 89: 56-62.

[7] BEAUDOIN J J, TAMTSIA B, MARCHAND J, et al. Solvent exchange in partially saturated and saturated microporous systems[J]. Cem Concr Res, 2000, 30(3): 359-370.

[8] KOWALCZYK R M, GAJEWICZ A M, MCDONALD P J. The mechanism of water-isopropanol exchange in cement pastes evidenced by NMR relaxometry[J]. RSC Adv, 2014, 4(40): 20709-20715.

[9] ZHANG L, GLASSER F P. Critical examination of drying damage to cement pastes[J]. Adv Cem Res, 2000, 12(2): 79-88.

[10] GALLE C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry A comparative study between oven-, vacuum-, and freeze-drying[J]. Cem Concr Res, 2001, 31(10): 1467-1477.

[11] WANG J L, DONG S F, PANG S D, et al. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes[J]. Cem Concr Compos, 2022, 128: 104453.

[12] ZHANG J, SCHERER G W. Comparison of methods for arresting hydration of cement[J]. Cem Concr Res, 2011, 41(10): 1024-1036.

[13] PARROTT L J. Effect of drying history upon the exchange of pore water with methanol and upon subsequent methanol sorption behaviour in hydrated alite paste[J]. Cem Concr Res, 1981, 11(5-6): 651-658.

[14] FELDMAN R F. Diffusion measurements in cement paste by water replacement using Propan-2-OL[J]. Cem Concr Res, 1987, 17(4): 602-612.

[15] ZHANG Z D, SCHERER G W. Physical and chemical effects of isopropanol exchange in cement-based materials[J]. Cem Concr Res, 2021, 145: 106461.

[16] LIDE D. CRC Handbook of Chemistry and Physics[M], CRC Press, Boca Raton, FL, 2003-2004.

[17] WU M, FRIDH K, JOHANNESSON B, et al. Impact of sample crushing on porosity characterization of hardened cement pastes by low temperature calorimetry: comparison of powder and cylinder samples[J]. Thermochimica Acta, 2018, 665: 11-19.

[18] HEARN N, HOOTON R D. Sample mass and dimension effects on mercury intrusion porosimetry results[J]. Cem Concr Res, 1992, 22(5): 970-980.

[19] TAYLOR H F W, TURNER A B. Reactions of tricalcium silicate paste with organic liquids[J]. Cem Concr Res, 1987, 17(4): 613-623.

[20] HUGHES D C. The use of solvent exchange to monitor diffusion characteristics of cement pastes containing silica fume[J]. Cem Concr Res, 1988, 18(2): 321-324.

[21] SNELLINGS R, CHWAST J, CIZER , et al. RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages[J]. Mater Struct, 2018, 51(6): 172.

[22] SNOECK D, VELASCO L F, MIGNON A, et al. The influence of different drying techniques on the water sorption properties of cement-based materials[J]. Cem Concr Res, 2014, 64: 54-62.

[23] MACIEL M H, SOARES G S, DE OLIVEIRA ROMANO R C, et al. Monitoring of Portland cement chemical reaction and quantification of the hydrated products by XRD and TG in function of the stoppage hydration technique[J]. J Therm Anal Calorim, 2019, 136(3): 1269-1284.

[24] ZHANG Z D, SCHERER G W. Supercritical drying of cementitious materials[J]. Cem Concr Res, 2017, 99: 137-154.

[25] DAY R L, MARSH B K. Measurement of porosity in blended cement pastes[J]. Cem Concr Res, 1988, 18(1): 63-73.

[26] DE WEERDT K, BEN HAHA M, LE SAOUT G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cem Concr Res, 2011, 41(3): 279-291.

[27] FELDMAN R F, BEAUDOIN J J. Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements[J]. Cem Concr Res, 1991, 21(2-3): 297-308.

[28] YANG K R, WHITE C E. Multiscale pore structure determination of cement paste via simulation and experiment: the case of alkali-activated metakaolin[J]. Cem Concr Res, 2020, 137: 106212.

[29] SCRIVENER K L, FLLMANN T, GALLUCCI E, et al. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods[J]. Cem Concr Res, 2004, 34(9): 1541-1547.

[30] ZHOU C S, REN F Z, WANG Z D, et al. Why permeability to water is anomalously lower than that to many other fluids for cement-based material?[J]. Cem Concr Res, 2017, 100: 373-384.

[31] MITCHELL L D, MARGESON J C. Theeffects of solvents on C-S-H as determined by thermal analysis[J]. J Therm Anal Calorim, 2006, 86(3): 591-594.

[32] PARROTT L J. Thermogravimetric and sorption studies of methanol exchange in an alite paste[J]. Cem Concr Res, 1983, 13(1): 18-22.

[33] VAZQUEZ G, ALVAREZ E, NAVAZA J M. Surface tension of alcohol water + water from 20 to 50.degree.C[J]. J Chem Eng Data, 1995, 40(3): 611-614.

[34] BEAUDOIN J J. Validity of using methanol for studying the microstructure of cement paste[J]. Mater Struct, 1987, 20(1): 27-31.

[35] BEAUDOIN J J, GU P, MARCHAND J, et al. Solvent replacement studies of hydrated Portland cement systems: The role of calcium hydroxide[J]. Adv Cem Based Mater, 1998, 8(2): 56-65.

[36] RODRIGUEZ-NAVARRO C, SUZUKI A, RUIZ-AGUDO E. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation[J]. Langmuir, 2013, 29(36): 11457-11470.

[37] TRENWITH A B. Thermal decomposition of isopropanol[J]. J Chem Soc, Faraday Trans 1, 1975, 71: 2405.

[38] ZHANG Z D, SCHERER G W. Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils[J]. Cem Concr Compos, 2020, 111: 103625.

[39] NIU S L, HAN K H, LU C M, et al. Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate[J]. Appl Energy, 2010, 87(7): 2237-2242.

[40] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford, 1997.

[41] DAY R L. Reactions between methanol and Portland cement paste[J]. Cem Concr Res, 1981, 11(3): 341-349.

[42] MIKHAIL R, SELIM S. Adsorption of organic vapors in relation to the pore structure of hardened Portland cement pastes[R]. Symposium on Structure of Portland Cement Paste and Concrete, Highway Research Board, Special Report 1966, 90: 123-134.

[43] CHANDRA S, FLODIN P. A discussion on the paper “reactions between methanol and Portland cement paste” by R.L. Day (vol. 11, pp 341-349, 1981)[J]. Cem Concr Res, 1982, 12(2): 261-262.

[44] HANSEN E W, GRAN H C, MACHABE Y. FLR technique exchange of methanol/fluorescent dye with water in water-saturated cement paste examined by NMR[J]. Cem Concr Res, 2000, 30(4): 535-541.

[45] KHOSHNAZAR R, BEAUDOIN J, RAKI L, et al. Solvent exchange in sulphoaluminate phases. part I: ettringite[J]. Adv Cem Res, 2013, 25(6): 314-321.

[46] KHOSHNAZAR R, BEAUDOIN J, RAKI L, et al. Solvent exchange in sulfoaluminate phases. part II: monosulfate[J]. Adv Cem Res, 2013, 25(6): 322-331.

[47] HANSEN E W, GRAN H C. Carbon NMR used in probing the exchange of ethanol with water in water-saturated cement pastes[J]. Magn Reson Imaging, 1996, 14(7/8): 903-904.

[48] GRAN H C, HANSEN E W. Exchange rates of ethanol with water in water-saturated cement pastes probed by NMR[J]. Adv Cem Based Mater, 1998, 8(3/4): 108-117.

[49] HANSEN E, GRAN H. FLR technique - Exchange kinetics of ethanol/fluorescent dye with water in water-saturated cement paste examined by 1H- and 2H- NMR[J]. Cem Concr Res, 2002, 32(5): 795-801.

[50] SCHERER G W. Theory of drying[J]. J Am Ceram Soc, 1990, 73(1): 3-14.

[51] ZHANG Z D, ANGST U. A dual-permeability approach to study anomalous moisture transport properties of cement-based materials[J]. Transp Porous Med, 2020, 135(1): 59-78.

[52] KONECNY L, NAQVI S J. The effect of different drying techniques on the pore size distribution of blended cement mortars[J]. Cem Concr Res, 1993, 23(5): 1223-1228.

[53] ZENG Q, LI K F, FEN-CHONG T, et al. Pore structure characterization of cement pastes blended with high-volume fly-ash[J]. Cem Concr Res, 2012, 42(1): 194-204.

[54] PARROTT L J, HANSEN W, BERGER R L. Effect of first drying upon the pore structure of hydrated alite paste[J]. Cem Concr Res, 1980, 10(5): 647-655.

[55] THOMAS M D A. The suitability of solvent exchange techniques for studying the pore structure of hardened cement paste[J]. Adv Cem Res, 1989, 2(5): 29-34.

张爱, 葛勇. 溶剂交换对水泥基材料微结构的影响[J]. 硅酸盐学报, 2023, 51(8): 2098. ZHANG Ai, GE Yong. Effect of Solvent Exchange on Microstructure of Cement-Based Materials - A Short Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2098.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!