光谱学与光谱分析, 2013, 33 (1): 196, 网络出版: 2013-02-04   

基于不同模型的土壤有机质含量高光谱反演比较分析

Comparative Analysis of Soil Organic Matter Content Based on Different Hyperspectral Inversion Models
栾福明 1,2,*张小雷 1,2熊黑钢 3,4张芳 4王芳 1,2
作者单位
1 中国科学院新疆生态与地理研究所, 新疆 乌鲁木齐830011
2 中国科学院大学, 北京100049
3 北京联合大学应用文理学院, 北京100083
4 新疆大学资源与环境科学学院, 新疆 乌鲁木齐830046
摘要
以新疆奇台县为研究区域, 选取该县40个土壤样本, 采用多元线性逐步回归法和人工神经网络法两种方法分别建立了土壤有机质含量的反演模型, 并对模型进行了检验。 结果发现: 不同模型的精度值各异, 其拟合效果从高到低依次为人工神经网络(ANNs)集成模型>单个人工神经网络(ANNs)模型>多元逐步回归(MLSR)模型。 人工神经网络的线性和非线性逼近能力较强, 而其集成模型作为提高反演模型精度的重要手段, 相关系数高达0.938, 均方根误差和总均方根误差最小, 分别仅为2.13和1.404, 对土壤有机质含量的预测能力与实测光谱非常接近, 分析结果达到了较实用的预测精度, 为最优拟合模型。
Abstract
The present paper, based on the Qitai county of Xinjiang, selected 40 soil samples, and used two methods respectively, i.e. multiple linear stepwise regression(MLSR) and artificial neural network (ANNs) , to establish the inversion and predieting model of soil organic matter (SOM) content and the model test from measured reflectance spectra and relative test were carried through to the models. Through quantitative analysis, the conclusions can be drawn as follows that the precision values of the different models vary from one to another, the model fitting effects order from high to low is that the integrated model for artificial neural networks (ANNs) is best, single artificial neural networks (ANNs) model is better, while stepwise multiple regression (MLSR) models are worse. Artificial neural networks (ANNs) has the strong abilities of linear and nonlinear approximation, while its integrated model for artificial neural networks (ANNs) is an important way to improve the inversion accuracy of soil organic matter (SOM) content, with the correlation coefficient up to 0.938, root mean square error and total root mean square error are minimum, being 2.13 and 1.404 respectively, and the predictive ability of the soil organic matter (SOM) content are very close to the measured spectrum,so the analysis results can achieve a more practical prediction accuracy for the best fitting model.
参考文献

[1] Alabbas A H, Swain P H, Baumgardner M F. Soil Sci., 1972, 114(6): 477.

[2] LU Yan-li, BAI You-lu, YANG Li-ping(卢艳丽, 白由路, 杨俐苹). Plant Nutrition and Fertilizer Science(植物营养与肥料学报), 2011, 17(2): 456.

[3] ZHANG Fa-sheng, QU Wei, YIN Guang-hua(张法升, 曲威, 尹光华, 等). Chinese Journal of Applied Ecology(应用生态学报), 2010, 21(4): 883.

[4] ZHANG Liang-jun, CAO Jing, JIANG Shi-zhong(张良均, 曹晶, 蒋世忠). The Practical Tutorial in Artificial Neural Network. Beijing: China Machine Press(北京: 机械工业出版杜), 2007. 64, 99.

[5] XU Yong-ming, LIN Qi-zhong, WANG Lu, et al(徐永明, 蔺启忠, 王璐, 等). Acta Pedologica Sinica(土壤学报), 2006, 43(5): 709.

[6] LI Wei, ZHANG Shu-hui, ZHANG Qian, et al(李伟, 张书慧, 张倩, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2007, 23(1): 55.

[7] LIU Huan-jun, ZHANG Bai, ZHAO Jun, et al(刘焕军, 张柏, 赵军, 等). Acta Pedologica Sinica(土壤学报), 2007, 44(1): 27.

[8] Chang C W, Laird D A. Near-infrared Reflectance Spectroscopic Analysis of Soil C and N. Soil Science, 2002, 167: 110.

[9] HAN Li-qun(韩力群). A Course in Artificial Neural Network(人工神经网络教程). Beijing: Beijing University of Posts and Telecommunications Press(北京: 北京邮电大学出版社), 2006. 85.

[10] ZHOU Kai-li, KONG Yao-hong(周开利, 康耀红). Artificial Neural Network Model and MATLAB Simulative Programme Design(神经网络模型及其MATLAB仿真程序设计). Beijing: Tsinghua University Press(北京: 清华大学出版社), 2005. 68, 158.

栾福明, 张小雷, 熊黑钢, 张芳, 王芳. 基于不同模型的土壤有机质含量高光谱反演比较分析[J]. 光谱学与光谱分析, 2013, 33(1): 196. LUAN Fu-ming, ZHANG Xiao-lei, XIONG Hei-gang, ZHANG Fang, WANG Fang. Comparative Analysis of Soil Organic Matter Content Based on Different Hyperspectral Inversion Models[J]. Spectroscopy and Spectral Analysis, 2013, 33(1): 196.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!