发光学报, 2015, 36 (1): 1, 网络出版: 2015-01-13   

大功率半导体激光器研究进展

Development of High Power Diode Laser
作者单位
发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
对半导体激光器的发展历史和发展现状进行了综述, 并具体介绍了长春光学精密机械与物理研究所近年来在大功率半导体激光器方面所取得的主要进展,特别是在大功率半导体激光器的激光光源、垂直腔面发射激光器和新型激光器芯片等方面。
Abstract
This paper reviews on the history and the development status for semiconductor lasers, meanwhile focuses on the high power semiconductor laser achievements acquired by Changchun Institute of Optics, Fine Mechanics and Physics(CIOMP) in recent years, especially at the aspects of high power semiconductor laser sources, vertical cavity surface emitting lasers(VCSEL) and novel laser chips.
参考文献

[1] Basov N G, Krokhin O N, Popo Y M. Production of negative-temperature states in p-n junctions of degenerate semiconductors [J]. Sov. Phy. JETP, 1961, 13:1320-1321.

[2] Hall R N, Fenner G E, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Phys. Rev. Lett., 1962, 9(9):366-368.

[3] Wang Q M. Development of semiconductor laser [J]. Physics (物理), 1996, 25(2):67-75 (in Chinese).

[4] Alferov Z I, Kazarinov R F. Semiconductor laser with electric pumping: Soviet Union Patent, N181737 [P]. 1963.

[5] Kroemer H. A proposed class of heterojunction injection lasers [J]. Proc. IEEE, 1963, 51:1782-1783.

[6] Panish M B, Hayashi I, Sumski S. Double-heterostructure injection with room-temperature thresholds as low as 2 300 A/cm2 [J]. Appl. Phys. Lett., 1970, 16:326-328.

[7] Alferov Z I. Semiconductor laser with extremely low divergence of radiation [J]. Sov. Phys. Semicond., 1974, 8:541-545,

[8] Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers [J]. Jpn. J. Appl. Phys., 1979, 18(12):2329-2330.

[9] Iga K. Surface-emitting laser—Its birth and generation of new optoelectronics field [J]. IEEE J. Sel. Top. Quant. Electon., 2000, 6(6):1201-1215.

[10] Iga K, Kinoshita S, Koyama F. Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6 mA [J]. Electron. Lett.,1987, 23(3):134-136.

[11] Jewell J, McCall S, Scherer A, et al. Transverse modes, waveguide dispersion and 30-ps recovery in submicron GaAs/AlAs microresonators [J]. Appl. Phys. Lett., 1989, 55(1):22-24.

[12] Koyama F, Kinoshita S, Iga K. Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser [J]. Appl. Phys. Lett., 1989, 55(3):221-222.

[13] Chen J, Wang J, Soderstrom D, et al. High volume 850 nm oxide VCSEL development for high bandwidth optical data link applications [J]. SPIE, 2009, 7229:722904-1-11.

[14] Kern A, Wahl D, Haidar M T, et al. Monolithic integration of VCSELs and PIN photodiodes for bidirectional data communication over standard multimode fibers [J]. SPIE, 2010, 7720:77200B-1-9.

[15] Gatto A, Boletti A, Boffi P, et al. Adjustable-chirp VCSEL-to-VCSEL injection locking for 10-Gb/s transmission at 1.55 μm [J]. Opt. Express, 2009, 17(24):21748-21753.

[16] Geib K M, Serkland D K, Keeler G A, et al. Photonics technology development for optical fuzing [J]. SPIE, 2005,5871:58710J-1-12.

[17] Shchegrov A V, Watson J P, Lee D, et al. Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology [J]. SPIE, 2005, 5737:113-119.

[18] Hoghooghi N, Ozdur I, Bhooplapur S, et al. Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL [J]. IEEE Photon. Technol. Lett., 2010, 22(20):1509-1511.

[19] Al-Samaneh A, Renz S, Strodl A, et al. Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications [J]. SPIE, 2010, 7720:772006-1-14.

[20] Stickley C M, Filipkowski M E, Parra E, et al. Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview [J]. Adv. Solid-State Photon., 2006:TuA1.

[21] Stickley C M, Filipkowski M E, Parra E, et al. Overview of progress in super high efficiency diodes for pumping high energy lasers [J]. SPIE, 2006, 6104:610405-1-5.

[22] Bachmann F. Goals and status of the German national research initiative BRIOLAS (brilliant diode lasers) [J]. SPIE, 2007, 6456:PSI645608-1-11.

[23] Diehl R. High-power DiodeLasers: Fundamentals, Technology, Applications [M]. Berlin: Springer, 2000:preface.

[24] Bachmann F. Industrial applications of high power diode lasers in materials processing [J]. Appl. Surf. Sci., 2003, 208-209:125-136.

[25] Bachmann F, Loosen P, Poprawe R. High Power Diode Lasers Technology and Applications [M]. New York: Springer, 2007:535-536.

[26] Price K, Karlsen S, Leisher P, et al. High brightness fiber coupled pump laser development [J]. SPIE, 2010, 7583:758308-1-7.

[27] Bao L, Wang J, De Vito M, et al. Performance and reliability of high power 7xx nm laser diodes [J]. SPIE, 2011, 7953:79531B-1-12.

[28] Bezotosnyi V V, Bondarev V Y, Krokhin O N, et al. Laser diodes emitting up to 25 W at 808 nm [J]. Quant. Electron., 2009, 39(3):241-243

[29] Leisher P, Price K, Bashar S, et al. Mode control for high performance laser diode sources [J]. SPIE, 2008, 6952:69520C-1-11.

[30] Crump P, Blume G, Paschke K, et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 μm [J]. SPIE, 2009, 7198:719814-1-7.

[31] Tarasov I S, Pikhtin N A, Slipchenko S O, et al. High power CW (16 W) and pulse (145 W) laser diodes based on quantum well heterostructures [J]. Spectrochim. Acta Part A, 2007, 66(4-5):819-823.

[32] Heinemann S, Lewis B, Regaard B, et al. Single emitter based diode lasers with high brightness, high power and narrow linewidth [J]. SPIE, 2011, 7918:79180M-1-6.

[33] Duesterberg R, Xu L, Skidmore J A, et al. 100 W high-brightness multi-emitter laser pump [J]. SPIE, 2011, 7918:79180V-1-7.

[34] Gapontsev V, Moshegov N, Trubenko P, et al. High-brightness 9xx-nm pumps with wavelength stabilization [J]. SPIE, 2010, 7583:75830A-1-6.

[35] Pierer J, Lützelschwab M, Grossmann S, et al. Automated assembly processes of high power single emitter diode lasers for 100 W in 105 μm/NA 0.15 fiber module [J]. SPIE, 2011, 7918:79180I-1-9.

[36] Schrder D, Werner E, Franke A, et al. Roadmap to low cost, high brightness diode laser power out of the fiber [J]. SPIE, 2010, 7583:758309-1-5.

[37] Werner M, Wessling C, Hengesbach S, et al. 100 W/100 μm passively cooled, fiber coupled diode laser at 976 nm based on multiple 100 μm single emitters [J]. SPIE, 2009, 7198:71980P-1-7.

[38] Treusch H G, Harrison J, Morris B, et al. Compact high-brightness and high-power diode laser source for materials processing [J]. SPIE, 2000, 3945:23-31.

[39] Miyajima H, Kan H, Kanzaki T, et al. Jet-type, water-cooled heat sink that yields 255-W continuous-wave laser output at 808 nm from a 1-cm laser diode bar [J]. Opt. Lett., 2004, 29(3):304-306.

[40] Braunstein J, Mikulla M, Kiefer R, et al. 267 W CW A1GaAs/GaInAs diode laser bars [J]. SPIE, 2000, 3945:17-22.

[41] Ichtenstein N, Manz Y, Mauron P, et al. 325 watt from 1-cm wide 9xx laser bars for DPSSL- and FL-applications [J]. SPIE, 2005, 5711:1-11.

[42] Crump P, Wang J, Crum T, et al. > 360 W and > 70% efficient GaAs-based diode lasers [J]. SPIE, 2005, 5711:21-29.

[43] Lorenzen D, Schrder M, Meusel J, et al. Comparative performance studies of indium and gold-tin packaged diode laser bars [J]. SPIE, 2006, 6104:610404-1-12.

[44] Li H X, Chyr I, Jin X, et al. >700 W continuous-wave output power from single laser diode bar [J]. Electron. Lett., 2007, 43(1):27-28.

[45] Li H X, Chyr I, Brown D, et al. Ongoing development of high-efficiency and high-reliability laser diodes at spectra-physics [J]. SPIE, 2007, 6456:64560C-1-9.

[46] Schrder D, Meusel J, Hennig P, et al. Increased power of broad area lasers (808 nm/980 nm) and applicability to 10 mm-bars with up to 1 000 watt QCW [J]. SPIE, 2007, 6456:64560N-1-10.

[47] Knapczyk M T, Jacob J H, Eppich H, et al. 70% efficient, near 1 kW, single 1-cm laser-diode bar at 20 ℃ [J]. SPIE, 2011, 7918:79180F-1-6.

[48] Neukum J. Laser diodes pump up the power [J]. Nat. Photon., 2007, 1:385-386.

[49] Timmermann A, Bartoschewski D, Schlüter S, et al. Intensity increasing up to 4 MW/cm2 with BALBs via wavelengths coupling [J]. SPIE, 2009, 7198:71980X-1-10.

[50] Voss M, Meinschien J, Bruns P, et al. High brightness fibre coupled diode lasers of up to 4-kW output power for material processing [J]. SPIE, 2012, 8241:824103-1-7.

[51] Wolf P, Khler B, Rotter K, et al. High-power, high-brightness and low-weight fiber coupled diode laser device [J]. SPIE, 2011, 7918:79180O-1-9.

[52] Khler B, Segref A, Wolf P, et al. Multi-kW high-brightness fiber coupled diode laser [J]. SPIE, 2013, 8605:86050B-1-7.

[53] Strohmaier S, Tillkorn C, Olschowsky P, et al. High-power, high-brightness direct-diode lasers [J]. OPN Opt. Photon. News, 2010, 21(10):25-29.

[54] Bonati G F, Hennig P, Schmidt K, et al. Passively cooled diode laser for high power applications [J]. SPIE, 2004, 5336:71-76.

[55] Leers M, Scholz C, Boucke K, et al. Expansion-matched passively-cooled heatsinks with low thermal resistance for high-power diode laser bars [J]. SPIE, 2006, 6104:610403-1-10.

[56] Vinokurov D A, Zorina S A, Kapitonov V A, et al. High-power laser diodes based on asymmetric separate-confinement heterostructures [J]. Semiconductors, 2005, 39(3):370-373.

[57] Kanskar M, Earles T, Goodnough T, et al. High-power conversion efficiency Al-free diode lasers for pumping high-power solid-state laser systems [J]. SPIE, 2005, 5738:47-56.

[58] Peters M, Rossin V, Everett M, et al. High power, high efficiency laser diodes at JDSU [J]. SPIE, 2007, 6456:64560G-1-11.

[59] Crump P, Wenzel H, Erbert G, et al. Passively cooled TM polarized 808-nm laser bars with 70% power conversion at 80-W and 55-W peak power per 100-μm stripe width [J]. IEEE Photon. Technol. Lett., 2008, 20(16):1378-1380.

[60] Hodges A, Wang J, De Franza M, et al. A CTE matched, hard solder, passively cooled laser diode package combined with nXLTTM facet passivation enables high power, high reliability operation [J]. SPIE, 2007, 6552:65521E-1-9.

[61] Rossin V, Peters M, Zucker E, et al. Highly reliable high-power broad area laser diodes [J]. SPIE, 2006, 6104:610407-1-8.

[62] Bao L, Wang J, De Vito M, et al. Reliability of high performance 9xx-nm single emitter diode lasers [J]. SPIE, 2010, 7583:758302-1-11.

[63] Gapontsev V, Berishev I, Chuyanov V, et al. 8xx-10xx nm highly efficient single emitter pumps [J]. SPIE, 2008, 6876:68760I-1-7.

[64] Levy M, Rappaport N, Klumel G, et al. High-power single emitters for fiber laser pμmping across 8xx nm - 9xx nm wavelength bands [J]. SPIE, 2012, 8241:82410A-1-11.

[65] Pawlik S, Guarino A, Matuschek N, et al. Improved brightness on broad-area single emitter (BASE) modules [J]. SPIE, 2009, 7198:719817-1-9.

[66] Gao W, Xu Z, Cheng L, et al. High power high reliable single emitter laser diodes at 808 nm [J]. SPIE, 2007, 6456:64560B-1-8.

[67] Zorn M, Hülsewede R, Schulze H, et al. Jenoptik diode lasers and bars optimized for high-power applications in the NIR range [J]. SPIE, 2010, 7583:75830U-1-10.

[68] Crump P, Wang J, Crum T, et al. Reliable 800-nm 125 W bars and 83.5% efficient 975-nm single emitters [C]// Proceedings of The 18th Solid State and Diode Laser Technology Review, Los Angeles: IEEE, 2005:1-5.

[69] Krejci M, Gilbert Y, Müller J, et al. Power scaling of bars toward 85 mW per 1 μm stripe width reliable output power [J]. SPIE, 2009, 7198:719804-1-10,

[70] Feeler R, Junghans J, Remley J, et al. Reliability of high-power QCW arrays [J]. SPIE, 2010, 7583:758304-1-9.

[71] Fan L, Cao C, Thaler G, et al. Reliable high-power long-pulse 8xx-nm diode laser bars and arrays operating at high temperature [J]. SPIE, 2011, 7918:791805-1-11.

[72] Rossin V, Peters M, Zucker E, et al. Highly reliable high-power broad area laser diodes [J]. SPIE, 2006, 6104:610407-1-10.

[73] Gao W, Xu Z T, Cheng L S, et al. High power high reliable single emitter laser diodes at 808 nm [J]. SPIE, 2007, 6456:64560B-1-5.

[74] Xu Z T, Gao W, Cheng L S, et al. Highly reliable, high brightness, 915 nm laser diodes for fiber laser applications [J]. SPIE, 2008, 6909:69090Q-1-10.

[75] Lorenzen D, Meusel J, Schroder D, et al. Passively cooled diode lasers in the CW power range of 120 to 200 W [J]. SPIE, 2008, 6876:68760Q-1-12.

[76] Schrder D, Schrder M, Werner E, et al. Improved laser diode for high power and high temperature applications [J]. SPIE, 2009, 7198:719809-1-8.

[77] Schwertfeger S, Wiedmann J, Sumpf B, et al. 7.4 W continuous-wave output power of master oscillator power amplifier system at 1 083 nm [J]. Electron. Lett., 2006, 42(6):346-347.

[78] Wenzel H, Paschke K, Brox O, et al. 10 W continuous-wave monolithically integrated master-oscillator power-amplifier [J]. Electron. Lett., 2007, 43(3):160-162.

[79] Lammert R M, Osowski M L, Elarde V C, et al. High-power single-mode laser diodes with tapered amplifiers [C]//Proc. of IEEE LEOS, 2008:850-851.

[80] Spiessberger S, Schiemangk M, Sahm A, et al. Micro-integrated 1 watt semiconductor laser system with a linewidth of 3.6 kHz [J]. Opt. Express, 2011, 19(8):7077-7083.

[81] Feise D, Blume G, Dittrich H, et al. High-brightness 635 nm tapered diode lasers with optimized index guiding [J]. SPIE, 2010, 7583:75830V-1-12.

[82] Sumpf B, Adamiec P, Zorn M, et al. 650 nm tapered lasers with 1 W maximum output power and nearly diffraction limited beam quality at 500 mW [J]. SPIE, 2008, 6876:68760M-1-8.

[83] Sumpf B, Adamiec P, Zorn M, et al. Nearly diffraction-limited tapered lasers at 675 nm with 1-W output power and conversion efficiencies above 30% [J]. IEEE Photon. Technol. Lett., 2011, 23(4):266-268.

[84] Erbert G, Fricke J, Hülsewede R, et al. 3 W-high brightness tapered diode lasers at 735 nm based on tensile strained GaAsP-QWs [J]. SPIE, 2003, 4995:29-38.

[85] Dittmar F, Sumpf B, Fricke J, et al. High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M2=1.9 at P=4.4 W [J]. IEEE Photon. Technol. Lett., 2006, 18(4):601-603.

[86] Jensen O B, Klehrb A, Dittmarb F, et al. 808 nm tapered diode lasers optimised for high output power and nearly diffraction-limited beam quality in pulse mode operation [J]. SPIE, 2007, 6456:64560A-1-10.

[87] Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser [J]. Electron. Lett., 2008, 44(21):1253-1254.

[88] Sumpf B, Hasler X H, Adamiec P, et al. 12.2 W output power from 1 060 nm DBR tapered lasers with narrow spectral line width and nearly diffraction limited beam quality [C]//European Conference on Lasers and Electro-Optics 2009 and The European Quantμm Electronics Conference, 2009:56-63.

[89] Fricke J, Matalla M, Paschke K, et al. Fabricating and testing of Bragg gratings for 1 060 nm α-DFB lasers [J]. SPIE, 2003, 4947:223-231

[90] Walpole J N, Donnelly J P, Taylor P J, et al. Slab-coupled 1.3-μm semiconductor laser with single-spatial large-diameter mode [J]. IEEE Photon. Technol. Lett., 2002, 14(6):756-758.

[91] Huang R K, Donnelly J P, Missaggia L J, et al. High brightness slab-coupled optical waveguide lasers [J]. SPIE, 2007, 6485:64850F-1-9.

[92] Huang R K, Chann B, Missaggia L J, et al. High-power coherent beam combination of semiconductor laser arrays [C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science, 2008:23-32.

[93] Ledentsov N N, Shchukin V A. Novel concepts for injection lasers [J]. Opt. Eng., 2002, 41(12):3193-3203.

[94] Ledentsov N N, Shchukin V A. Novel approaches to semiconductor lasers [J]. SPIE, 2002, 4905:222-234.

[95] Maximov M V, Shernyakov Y M, Novikov I I, et al. Narrow vertical beam divergence laser diode based on longitudinal photonic band crystal waveguide [J]. Electron. Lett., 2003, 39(24):1729-1731.

[96] Maximov M V, Shernyakov Y M, Novikov I I, et al. Low divergence edge-emitting laser with asymmetric waveguide based on one-dimensional photonic crystal [J]. Phys. Stat. Sol. (c), 2005, 2(2):919-922.

[97] Novikov I I, Gordeev N Y, Shernyakov Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence [J]. Appl. Phys. Lett., 2008, 92(10):103515-1-3.

[98] Shchukin V, Ledentsov N, Kalosha V, et al. Modeling of photonic crystal based high power high brightness semiconductor lasers [J]. SPIE, 2010, 7597:75971A-1-11.

[99] Karachinsky L Y, Novikov I I, Shernyakov Y M, et al. High power GaAs/AlGaAs lasers (850 nm) with ultranarrow vertical beam divergence [J]. Appl. Phys. Lett., 2006, 89(23):231114-1-3.

[100] Kettler T, Posilovic K, Schulz O, et al. Single transverse mode 850 nm GaAs/AlGaAs lasers with narrow beam divergence [J]. Electron. Lett., 2006, 42(20):1157-1158.

[101] Posilovic K, Kettler T, Shchukin V A, et al. Ultrahigh-brightness 850 nm GaAs/AlGaAs photonic crystal laser diodes [J]. Appl. Phys. Lett., 2008, 93(22):221102-1-3.

[102] Kettler T, Posilovic K, Karachinsky L Y, et al. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays [J]. IEEE J. Select. Top. Quant. Electron., 2009, 15(3):901-908.

[103] Maximov M V, Shernyakov Y M, Novikov I I, et al. High power GaInP/AlGaInP visible lasers (λ=646 nm) with narrow circular shaped far-field pattern [J]. Electron. Lett., 2005, 41(13):741-742.

[104] Maximov M V, Shernyakov Y M, Novikov I I. High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence [J]. IEEE J. Quant. Electron., 2005, 41(11):1341-1348.

[105] Novikov I I, Shernyakov Y M, Maximov M V, et al. Single mode CW operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal [J]. Appl. Phys. Lett., 2006, 88(23):231108-1-3.

[106] Shchukin V A, Ledentsov N N, Gordeev N Y, et al. High brilliance photonic band crystal lasers [J]. SPIE, 2006, 6350:635005-1-9.

[107] Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity [J]. Opt. Lett., 2000, 25(6):405-407.

[108] TeraDiode [OL]. http://teradiode.com

[109] Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers [J]. SPIE, 2012, 8241:824102-1-11.

[110] Hecht J. Making direct laser diodes shine more brightly [J]. Laser Focus World, 2013, 48(6):21-22.

[111] Huang R K, Chann B, Missaggia L J, et al. High-brightness wavelength beam combined semiconductor laser diode arrays [J]. IEEE Photon. Technol. Lett., 2007, 19(4):209-211.

[112] Chann B, Goyal A K, Fan T Y, et al. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating [J]. Opt. Lett., 2006, 31(9):1253-1255.

[113] Roh S D, Grasso D M, Small J A. Very high brightness, fiber coupled diode lasers [J]. SPIE, 2009, 7198:71980Y-1-9.

[114] Hamilton C, Tidwell S, Meekhof D, et al. High power laser source with spectrally beam combined diode laser bars [J]. SPIE, 2004, 5336:1-10.

[115] Vijayakumar D, Jensena O B, Ostendorf R, et al. Spectral beam combining of a 980 nm tapered diode laser bar [J]. Opt. Express, 2010, 18(2):893-898.

[116] Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings [J]. IEEE Photon. Technol. Lett., 2010, 22(5):284-286.

[117] Paschke K, Spiessberger S, Kaspari C, et al. High-power distributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth [J]. Opt. Lett., 2010, 35(3):402-404.

[118] Spiessberger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1 064 nm with a narrow intrinsic linewidth of 2 kHz [J]. Appl. Phys. B, 2011, 104(4):813-818.

[119] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers [J]. J. Appl. Phys., 1972, 43(5):2327-2335.

[120] Nakamura M, Aiki K, Umeda J, et al. CW operation of distributed-feedback GaAs-GaAlAs diode lasers at temperatures up to 300 K [J]. Appl. Phys. Lett., 1975, 27(7):403-405.

[121] He Y, An H, Cai J, et al. 808 nm broad area DFB laser for solid-state laser pumping application [J]. Electron. Lett., 2009, 45(3):163-164.

[122] Schultz C M, Crump P, Wenzel H, et al. 11 W broad area 976 nm DFB lasers with 58% power conversion efficiency [J]. Electron. Lett., 2010, 46(8):580-581.

[123] Spiessberger S, Schiemangk M, Wicht A, et al. Narrow linewidth DFB lasers emitting near a wavelength of 1 064 nm [J]. J. Lightwave Technol., 2010, 28(7):2611-2616.

[124] Cayron C, Ligeret, Resneau V P, et al. High-power, high-reliability, and narrow linewidth, Al-free DFB laser diode, for Cs pumping (852 nm) [J]. SPIE, 2010, 7616:76160Z-1-11.

[125] Dumitrescu M, Telkkl J, Karinen J, et al. Development of high-speed directly-modulated DFB and DBR lasers with surface gratings [J]. SPIE, 2011, 7953:79530D-1-12.

[126] Venus G, Gourevitch A, Smirnov V, et al. High power volume Bragg laser bar with 10 GHz spectral bandwidth [J]. SPIE, 2008, 6952:69520D-1-5.

[127] Wenzel H, Husler K, Blume G, et al. High-power 808 nm ridge-waveguide diode lasers with very small divergence, wavelength-stabilized by an external volume Bragg grating [J]. Opt. Lett., 2009, 34(11):1627-1629.

[128] Khler B, Brand T, Haag M, et al. Wavelength stabilized high-power diode laser modules [J]. SPIE, 2009, 7198:719810-1-12.

[129] Jager R, Grabherr M, Jung C, et al. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs [J]. Electron. Lett., 1997, 33(4):330-331.

[130] Haglund A, Gustavsson J, Vukusic J, et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief [J]. IEEE Photon. Technol. Lett., 2004, 16(2):368-370.

[131] Furukawa A, Sasaki S, Hoshi M, et al. High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure [J]. Appl. Phys. Lett., 2004, 85(22):5161-5163.

[132] Westbergh P, Gustavsson J, Haglund A, et al. 32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL [J]. Electron. Lett., 2009, 45(7):366-368.

[133] Pepeljugoski P, Kuchta D, Kwark Y, et al. 15.6-Gb/s transmission over 1 km of next generation multimode fiber [J]. IEEE Photon. Technol. Lett., 2002, 14(5):717-719.

[134] Westbergh P, Gustavsson J, Kogel B, et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL [J]. Electron. Lett., 2010, 46(14):1014-1016.

[135] Moser P, Lott J, Wolf P, et al. Energy-efficient oxide-confined 850 nm VCSELs for long distance multimode fiber optical interconnects [J]. IEEE J. Select. Top. Quant. Electron., 2011, 99:1-8.

[136] Seurin J F, Xu G, Miglo A, et al. High-power vertical-cavity surface-emitting lasers for solid-state laser pumping [J]. SPIE, 2012, 8276:827609-1-10.

[137] Miller M, Grabherr M, King R, et al. Improved output performance of high-power VCSELs [J]. IEEE J. Select. Top. Quant. Electron., 2001, 7(2):210-216.

[138] Miller M, Grabherr M, Jager R, et al. High-power VCSEL arrays for emission in the watt regime at room temperature [J]. IEEE Photon. Technol. Lett., 2001, 13(3):173-175.

[139] Dasaro L A, Seurin J F, Wynn J D. High-power, high-efficiency VCSELs pursue the goal [J]. Photon. Spectra, 2005, 39(2):62-66.

[140] Seurin J F, Xu G, Guo B, et al. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications [J]. SPIE, 2010, 7952, 79520G-1-10.

[141] Yan C, Ning Y, Qin L, et al. A high power InGaAs/GaAsP vertical-cavity surface-emitting laser and its temperature characteristics [J]. Semicond. Sci. Technol., 2004, 19(6):685-689.

[142] Yan C, Ning Y, Qin L, et al. High-power vertical-cavity surface-emitting laser with an extra Au layer [J]. IEEE Photon. Technol. Lett., 2005, 17(8):1599-15601.

[143] Cui J, Ning Y, Zhang Y, et al. Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution [J]. Appl. Opt., 2009, 48(18):3317-3321.

[144] Zhang J, Ning Y Q, Zeng Y G, et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks [J]. Laser Phys. Lett., 2013, 10(4):045802-1-7.

[145] Zhang J W, Ning Y Q, Zhang X, et al. High-peak-power vertical-cavity surface-emitting laser quasi-array realized using optimized large-aperture single emitters [J]. Jpn. J. Appl. Phys., 2014, 53(7):070303-1-5.

王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1. WANG Li-jun, NING Yong-qiang, QIN Li, TONG Cun-zhu, CHEN Yong-yi. Development of High Power Diode Laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1.

本文已被 73 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!