硅酸盐通报, 2022, 41 (3): 1020, 网络出版: 2022-08-03  

0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3三元系压电陶瓷的氧化物掺杂改性研究

Doping Effects of Oxides on 0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3 Ternary Piezoceramics
作者单位
1 成都大学机械工程学院, 成都 610106
2 四川大学, 深地科学与工程教育部重点实验室, 成都 610065
摘要
针对新一代声波测井仪器对其核心元件压电陶瓷兼具高居里温度、高压电系数以及高稳定性要求的迫切需求, 本文采用传统的固相反应-无压烧结技术制备了一种0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3(BY-PZT)三元系压电陶瓷, 并研究了四种氧化物掺杂对其微观结构及电学性能的影响。由XRD和SEM表征可知所有样品均呈纯四方相钙钛矿结构, 掺杂Cr2O3的样品平均晶粒尺寸最大。介电温谱和谐振频谱研究证实四种氧化物掺杂均能提高其介电性能的温度稳定性。掺杂La2O3的样品介电常数温度系数(Tkε)最低, 掺杂MnO2的样品机械品质因素(Qm)最高, 而掺杂CeO2的样品抗热退极化性能最好。高温复阻抗(Cole-Cole图)分析表明, Cr2O3掺杂能够显著提高BY-PZT陶瓷的高温电阻率, 陶瓷在高温下的电导行为主要由晶界响应控制。综合来看, 掺杂La2O3的样品兼具高居里温度(TC=397 ℃)和高压电系数(d33=290 pC/N), 并且在300 ℃退火4 h后d33仍能保持在270 pC/N左右, 有望在极限工作温度为300 ℃的高温压电器件中获得应用。
Abstract
Aiming at the urgent demand of the new generation of sonic logging tools for their core components, piezoelectricceramics, which have high Curie temperature, high voltage electrical coefficient and high stability, 0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3(BY-PZT) ternary piezoceramics with addition of different oxide additives were prepared by traditional solid-state reaction method. The effects of oxide additives on the phase structures and electrical properties of the BY-PZT ternary piezoceramics were investigated. XRD and SEM analysis show that all samples are pure tetragonal perovskite structure. When doped with Cr2O3, the average grain size of the samples has a maximum value. Dielectric temperature spectrum and resonance spectrum analysis illustrated that doping of four kinds of oxide improved the temperature stability of dielectric properties respectively. The lanthanum-doped sample got the lowest temperature coefficient of dielectric constant (Tkε). The mechanical quality factor (Qm) has a maximum value when MnO2 are doped; but the samples doped with CeO2 have the best thermal depolarization resistance. The analysis of high temperature complex impedance (Cole-Cole) shows that Cr2O3 doping significantly improve the high temperature resistivity of the ceramic. It is found that the electrical conduction behavior of the ceramics at high temperature is dominated by the grain-boundary response. The lanthanum-doped sample has both high Curie temperature (TC=397 ℃) and high piezoelectric constant (d33=290 pC/N), and after annealed at 300 ℃ for 4 h, the d33 value of the sample still retains above 270 pC/N, which provides great promising for application in the high-temperature piezoelectric devices with an extreme operating temperature of 300 ℃.
参考文献

[1] CHU S Y, CHEN T Y, TSAI I T, et al. Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device[J]. Sensors and Actuators A: Physical, 2004, 113(2): 198-203.

[2] CHEN J, DU Z Z, YANG Y T, et al. The electrical properties of low-temperature sintered 0.07Pb(Sb1/2Nb1/2)O3-0.93Pb(ZrxTi1-x)O3 multilayer piezoceramic actuator[J]. Ceramics International, 2021, 47(11): 15195-15201.

[3] YU X L, HOU Y D, ZHENG M P, et al. Multiscale heterogeneity strategy in piezoceramics for enhanced energy harvesting performances[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17800-17808.

[4] HUANG X, LI W W, ZENG J T, et al. The grain size effect in dielectric diffusion and electrical conduction of PZnTe-PZT ceramics[J]. Physica B: Condensed Matter, 2019, 560: 16-22.

[5] PANDA P K, SAHOO B. PZT to lead free piezo ceramics: a review[J]. Ferroelectrics, 2015, 474(1): 128-143.

[6] JAFFE B. Piezoelectric Ceramics[M]. Lin S H, Transl. 1st ed. Beijing: Science Press, 1979.

[7] EITEL R E, RANDALL C A, SHROUT T R, et al. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics[J]. Japanese Journal of Applied Physics, 2001, 40(Part 1, No.10): 5999-6002.

[8] ZHANG S M, LI X J, ZHANG S K, et al. Influence of excessive Pb and sintering temperature on the structure and properties of 0.39BS-0.61PT ceramics[J]. Ceramics International, 2021, 47(20): 29328-29334.

[9] JI J H, SHIN D J, KIM J, et al. BiScO3-PbTiO3 piezoelectric ceramics with Bi excess for energy harvesting applications under high temperature[J]. Ceramics International, 2020, 46(4): 4104-4112.

[10] EITEL R E, ZHANG S J, SHROUT T R, et al. Phase diagram of the perovskite system (1-x)BiScO3-xPbTiO3[J]. Journal of Applied Physics, 2004, 96(5): 2828-2831.

[11] YU Y, YANG J K, WU J G, et al. Ultralow dielectric loss of BiScO3-PbTiO3 ceramics by Bi(Mn1/2Zr1/2)O3 modification[J]. Journal of the European Ceramic Society, 2020, 40(8): 3003-3010.

[12] DUAN R R, SPEYER R F, ALBERTA E, et al. High Curie temperature perovskite BiInO3-PbTiO3 ceramics[J]. Journal of Materials Research, 2004, 19(7): 2185-2193.

[13] CHENG J R, ZHU W Y, LI N, et al. Fabrication and characterization of xBiGaO3-(1-x)PbTiO3: a high temperature reduced Pb-content piezoelectric ceramic[J]. Materials Letters, 2003, 57(13/14): 2090-2094.

[14] CHENG J R, LI N, CROSS L E. Structural and dielectric properties of Ga-modified BiFeO3-PbTiO3 crystalline solutions[J]. Journal of Applied Physics, 2003, 94(8): 5153-5157.

[15] COMYN T P, MCBRIDE S P, BELL A J. Processing and electrical properties of BiFeO3-PbTiO3 ceramics[J]. Materials Letters, 2004, 58(30): 3844-3846.

[16] 侯育冬,赵海燕,郑木鹏,等.BSPT基高温压电材料:机遇与挑战[J].北京工业大学学报,2020,46(6):664-679.

[17] 杨 乐,高 峰,邓贞奇,等.PbZrO3对0.1BiYbO3-0.9PbTiO3压电陶瓷相结构和电性能的影响[J].压电与声光,2010,32(4):646-649+653.

[18] SHI L, ZHANG B P, LIAO Q W, et al. Piezoelectric properties of Fe2O3 doped BiYbO3-Pb(Zr,Ti)O3 high Curie temperature ceramics[J]. Ceramics International, 2014, 40(8): 11485-11491.

[19] WANG Y L, CAI K, SHAO T M, et al. Low-cost (0.1BiYbO3-0.9PbTiO3)-PbZrO3-xMn high Curie temperature piezoelectric ceramics with improved high-temperature performance[J]. Journal of Applied Physics, 2015, 117(16): 164102.

[20] CAI K, YAN X, DENG P Y, et al. Phase coexistence and evolution in sol-gel derived BY-PT-PZ ceramics with significantly enhanced piezoelectricity and high temperature stability[J]. Journal of Materiomics, 2019, 5(3): 394-403.

[21] 吴金根,高翔宇,陈建国,等.高温压电材料、器件与应用[J].物理学报,2018,67(20):10-39.

[22] ZHANG S J, YU F P. Piezoelectric materials for high temperature sensors[J]. Journal of the American Ceramic Society, 2011, 94(10): 3153-3170.

[23] ZHANG S J, XIA R, LEBRUN L, et al. Piezoelectric materials for high power, high temperature applications[J]. Materials Letters, 2005, 59(27): 3471-3475.

[24] 董显林,范晓荣,梁瑞虹.深部油气勘探用高温压电陶瓷材料研制及产业化[J].科技促进发展,2015(3):360-364.

[25] CHEN J G, HU Z Q, SHI H D, et al. High-power piezoelectric characteristics of manganese-modified BiScO3-PbTiO3 high-temperature piezoelectric ceramics[J]. Journal of Physics D: Applied Physics, 2012, 45(46): 465303.

[26] WINOTAI P, UDOMKAN N, MEEJOO S. Piezoelectric properties of Fe2O3-doped (1-x)BiScO3-xPbTiO3 ceramics[J]. Sensors and Actuators A: Physical, 2005, 122(2): 257-263.

[27] SEHIRLIOGLU A, SAYIR A, DYNYS F. Doping of BiScO3-PbTiO3 ceramics for enhanced properties[J]. Journal of the American Ceramic Society, 2010, 93(6): 1718-1724.

[28] 高 峰,申扣喜.2-2压电复合材料的静水压电性能研究[C]//2009年全国水声学学术交流暨水声学分会换届改选会议论文集,2009:67-69.

[29] CHEN Y, LIANG D Y, WANG Q Y, et al. Microstructures, dielectric, and piezoelectric properties of W/Cr co-doped Bi4Ti3O12 ceramics[J]. Journal of Applied Physics, 2014, 116(7): 074108.

[30] CHEN Y, XIE S X, WANG H M, et al. Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles[J]. Journal of Alloys and Compounds, 2017, 696: 746-753.

[31] SETTER N, CROSS L E. The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics[J]. Journal of Applied Physics, 1980, 51(8): 4356-4360.

[32] UCHINO K, NOMURA S. Critical exponents of the dielectric constants in diffused-phase-transition crystals[J]. Ferroelectrics, 1982, 44(1): 55-61.

[33] NOBLANC O, GAUCHER P, CALVARIN G. Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric solid solutions around the morphotropic boundary[J]. Journal of Applied Physics, 1996, 79(8): 4291-4297.

[34] BADAPANDA T, SENTHIL V, ROUT S K, et al. Dielectric relaxation on Ba1-xBi2x/3Zr0.25Ti0.75O3 ceramic[J]. Materials Chemistry and Physics, 2012, 133(2/3): 863-870.

[35] SUMI S, RAO P P, KOSHY P. Impedance spectroscopic investigation on electrical conduction and relaxation in manganese substituted pyrochlore type semiconducting oxides[J]. Ceramics International, 2015, 41(4): 5992-5998.

[36] REHMAN F, WANG L, JIN H B, et al. Dielectric relaxation and electrical properties of Sm0.5Bi4.5Ti3FeO15 ceramics[J]. Journal of Alloys and Compounds, 2017, 709: 686-691.

周治, 王艺颖, 周华将, 雷丽勤, 王金秀, 陈渝. 0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3三元系压电陶瓷的氧化物掺杂改性研究[J]. 硅酸盐通报, 2022, 41(3): 1020. ZHOU Zhi, WANG Yiying, ZHOU Huajiang, LEI Liqin, WANG Jinxiu, CHEN Yu. Doping Effects of Oxides on 0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3 Ternary Piezoceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 1020.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!