压电与声光, 2022, 44 (2): 223, 网络出版: 2022-06-14  

压电MEMS兰姆波器件技术的最新进展与展望

Recent Advances and Prospects of Lamb Wave Devices Based on Piezo-MEMS
作者单位
1 中国电子科技集团公司 第二十四研究所,重庆400060
2 中国电子科技集团公司 第二十六研究所,重庆 400060
摘要
兰姆波谐振器(LWR)作为一种新兴的压电微机电系统(MEMS)声学器件,同时具有高工作频率、高机电耦合系数、高品质因数值及低功耗等特点,其制造工艺与集成电路工艺兼容,可在单片晶圆上实现多频率器件。基于LWR的声学滤波器是实现高性能射频前端组件的有效解决方案之一,能够满足未来通信设备多频率及集成化的发展要求,其相关研究已成为微声器件领域的热点。该文简要介绍了兰姆波的基本原理,综述了近年来基于氮化铝(AlN)薄膜和铌酸锂薄膜(LNOI)的压电MEMS兰姆波器件研究取得的最新成果,并讨论了压电MEMS兰姆波器件的发展趋势。
Abstract
As an emerging piezoelectric micro-electro-mechanical system(MEMS) acoustic device, the Lamb wave resonator has the features of high operating frequency, high k2t, high Q and low power consumption simultaneously, Its process is compatible with the integrated circuits and is promising to realize multi-frequency devices on a single wafer, The acoustic filter based on the Lamb wave resonator is one of the effective solutions to realize high-performance RF front-end modules, which can meet the development requirements of multi-frequency and integration of communication equipment in the future, thus the research on the Lamb wave devices has become a hot spot in the field of micro-acoustic devices, In this paper, the basic principle of the Lamb wave is introduced, The latest achievements in the research on piezoelectric MEMS Lamb wave devices based on AlN thin films and lithium niobate thin films (LNOI) in recent years are reviewed, Finally, the development trends of piezoelectric MEMS Lamb wave devices are discussed,
参考文献

[1] HAGELAUER A,FATTINGER G,RUPPEL C C W,et al, Microwave acoustic wave devices:recent advances on architectures,modeling,materials,and packaging[J]. IEEE Transactions on Microwave Theory and Techniques,2018,66(10):4548-4562,

[2] CHAUHAN V,HUCK C,FRANK A,et al, Enhancing RF bulk acoustic wave devices[J]. IEEE Microwave Magazine,2019,20(10):56-70,

[3] SU Zhongqing,YE Lin,LU Ye, Guided Lamb waves for identification of damage in composite structures:A review[J]. Journal of Sound and Vibration,2006,295:753-780,

[4] YANTCHEV V,KATARDJIEV I, Thin film Lamb wave resonators in frequency control and sensing applications:A review[J],Journal of Micromechanics and Microengineering,2013,23(4):1-14,

[5] 何杰,马晋毅,胡少勤,等, 基于LN/LT-POI 多层结构的SAW器件发展 [J]. 压电与声光,2020,42(6):864-870,

[6] 张涛,何杰,胡少勤,等, 集成铌酸锂光子器件技术的研究进展[J]. 压电与声光,2020,42(6):837-842,

[7] GONG Songbin,PIAZZA G, Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering[J]. IEEE Transactions on Microwave Theory and Techniques,2013,61(1):403-414,

[8] PIAZZA G,COLOMBO L,KOCHHAR A,et al, X-cut lithium niobate laterally vibrating MEMS resonator with figure of merit of 1 560 [J]. Journal of Microelectromechanical Systems,2018,27(4):602-604,

[9] ZHOU Hongyan,ZHANG Shibin,LI Zhongxu,et al, Surface wave and Lamb wave acoustic devices on heterogenous substrate for 5G front-ends [C]//San Francisco,USA:IEEE International Electron Devices Meeting (IEDM),2020:1-4,

[10] ZHOU Hongyan,ZHANG Shibin,ZHENG Pengcheng,et al, A 6, 1 GHz wideband solidly-mounted acoustic filter on heterogeneous substrate for 5G front-ends [C]// Tokyo,Japan:IEEE 35th International Conference on Micro Electro Mechanical Systems Conference(MEMS),2022:1006-1009,

[11] FAIZAN M,VILLANUEVA L G, Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement [J]. Journal of Microelectromechanical Systems,2021,30(3):369-374,

[12] CHEN Guofeng,RINALDI M, High-Q X band aluminum nitride combined overtone resonators[C]// Orlando,USA:Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC),2019:1-4,

[13] CHEN Guofeng,RINALDI M, Aluminum nitride combined overtone resonatorsfor the 5G high frequency bands[J]. Journal of Microelectromechanical Systems,2020,29(2):148-159,

[14] ASSYLBEKOVE M,CHEN Guofeng,PIRRO M,et al, Aluminum nitride combined overtone resonator for millimeter wave 5G applications[C]//Gainesville,USA:IEEE 34th international conference on micro electro mechanical systems (MEMS),2021:202-205,

[15] CASSELLA C,YU Hui,RINALDI M,et al, Aluminum nitride cross-sectional Lamé mode resonators[J]. Journal of Microelectromechanical Systems,2016,25(2):275-285,

[16] SCHAFFER Z A,PIAZZA G,MISHIN S,et al, Super high frequency simple process flow cross-sectional Lame mode resonators in 20% scandium-doped aluminum nitride [C]//Vancouver,Canada:IEEE 33rd International Conference on Micro Electro Mechanical Systems(MEMS),2020:1281-1284,

[17] ASSYLBEKOVA M,CHENY G F,MICHETTI G,et al, 11 GHz lateral-field-excited aluminum nitride cross-sectional Lam mode resonator[C]//Keystone,USA:Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF),2020:1-4,

[18] LU Ruochen,YANG Yansong,GONG Songbin,et al, A1 resonators in 128°Y-cut lithium niobate with electromechanical coupling of 46, 4% [J]. Journal of Microelectromechanical Systems,2020,29(3):313-319,

[19] Resonant Inc, High frequency resonator is foundation for high throughput 5G services—and much more[R], www, resonant, com, 2020,4:14,

[20] PLESSKY V,YANDRAPALLI S,TURNER P J, et al, 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate [J]. Electronics Letters,2019,55(2):98-100,

[21] YANDRAPALLI S,KK S E,PLESSKY V,et al, Fabrication andanalysis of thin film lithum niobate resonators for 5 GHz frequency and large Kt2 applications[C]//Gainesville,USA:IEEE 34th International Conference on Micro Electro Mechanical Systems(MEMS),2021:967-969,

[22] GAO Liuqing,YANG Yansong,GONG Songbin, A 14, 7 GHz lithium niobate acoustic filter with fractional bandwidth of 2, 93%[C]//Las Vegas,USA:IEEE International Ultrasonics Symposium (IUS),2020:1-4,

[23] YANG Yansong,GAO Liuqing,GONG Songbin, X-band miniature filters using lithium niobateacoustic resonators and bandwidth widening technique[J]. IEEE Transactions on Microwave Theory and Techniques,2021,69(3):1602-1610,

[24] GAO Liuqing,YANG Yansong,GONG Songbin, A 19 GHz lithium niobate acoustic filter with FBW of 2, 4%[C]//Los Angeles,USA:IEEE/MTT-S International Microwave Symposium(IMS),2020:241-244,

[25] YANG Yansong,LU Ruochen,GONG Songbin,et al, 10~60 GHz electromechanical resonators using thin-film lithium niobate [J]. IEEE Transactions on Microwave Theory and Techniques,2020,68(12):5211-5220,

[26] FAIZAN M,VILLANUEVA L G, Frequency-scalable fabrication process flow for lithium niobate based Lamb wave resonators[J]. Journal of Micromechanics and Microengineering,2020,30(1):015008,

[27] JIANG D,HU G,QI G,et al, A fully convolutional neural network-based regression approach for effective chemical composition analysis using near-infrared spectroscopy in cloud[J]. Journal of Artificial Intelligence and Technology,2021,1(1):74-82, "[28]LIU J,LIU Z,SUN C,et al, A data transmission approach based on ant colony optimization and threshold proxy re-encryption in WSNs[J]. Journal of Artificial Intelligence and Technology,2021,2(1):23-31,

[28] GAO Liuqing,YANG Yansong,GONG Songbin, Wideband hybrid monolithic lithium niobate acoustic filter in the K-band[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2021,68(4):1408-1417,

[29] LEE J,TEJEDOR E,WANG H,et al, Spectrum for 5G:Global status,challenges,and enabling technologies[J]. IEEE Communications Magazine,2018,56(3):12-18,

于晓权, 何杰, 马晋毅. 压电MEMS兰姆波器件技术的最新进展与展望[J]. 压电与声光, 2022, 44(2): 223. YU Xiaoquan, HE Jie, MA Jinyi. Recent Advances and Prospects of Lamb Wave Devices Based on Piezo-MEMS[J]. Piezoelectrics & Acoustooptics, 2022, 44(2): 223.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!