硅酸盐通报, 2022, 41 (8): 2879, 网络出版: 2022-09-12  

硼碳氮多孔材料的制备及其吸附再生性能研究

Preparation of Boron Carbonitride Porous Material and Its Adsorption and Regeneration Performance
作者单位
海南大学材料科学与工程学院, 南海海洋资源利用国家重点实验室, 海口 570228
摘要
硼碳氮(BCN)多孔材料因其具有高的比表面积、优异的化学稳定性而被认为是一种优异的吸附材料。本文以废弃椰壳、硼酸(H3BO3)和尿素(CO(NH2)2)为原料, 采用冷冻干燥法制备多孔生胚, 并在NH3气氛下通过高温固相反应法在不同的反应温度下合成BCN多孔材料。结果表明, 随着反应温度的升高, BCN多孔材料孔径逐渐变大, 当反应温度为950 ℃时平均孔径为2.1 nm。将BCN多孔材料用于吸附水中孔雀石绿(MG)有机染料, 其最大吸附量可达1 239.8 mg·g-1, 5次循环再生后吸附量平均值仍高达1 138.6 mg·g-1, 说明BCN多孔材料具有优异的循环吸附性能。采用Langmuir和Freundlich等温吸附模型、准一级和准二级吸附动力学模型研究了浓度、吸附时间和平衡吸附量之间的关系。结果表明, BCN多孔材料的吸附与准二级吸附动力学模型吻合, 其对MG的吸附属于均匀表面单层分子的Langmuir等温吸附。BCN多孔材料展现出优异的吸附能力, 是一种非常有应用前景的新型吸附剂。
Abstract
Boron carbonitride (BCN) porous material is considered as an excellent adsorption material due to its high specific surface area and excellent chemical stability. In this paper, porous embryos were prepared by freeze-drying method and BCN porous material was synthesized by high-temperature solid-phase reaction method under NH3 atmosphere at different reaction temperatures with waste coconut shells, boric acid (H3BO3) and urea (CO(NH2)2) as raw materials. The results show that with the increase of reaction temperature, the pore size of BCN porous material gradually increases, and the average pore size is 2.1 nm when the reaction temperature is 950 ℃. The as-prepared BCN porous material is applied to adsorb malachite green (MG), an organic dye pollution in water, and its maximum adsorption capacity can reach 1 239.8 mg·g-1. After five cycles of regeneration, the average adsorption capacity is still as high as 1 138.6 mg·g-1, indicating that BCN porous material has excellent cyclic adsorption performance. Langmuir and Freundlich isothermal adsorption models, pseudo-first-order and pseudo-second-order adsorption kinetic models were used to study the relationship among concentration, adsorption time and equilibrium adsorption capacity. The results show that the adsorption of BCN porous material is consistent with the pseudo-second-order adsorption kinetic model, and the adsorption on MG belongs to the Langmuir isotherm adsorption of uniform surface monolayer molecules. The as-prepared BCN porous material exhibits excellent adsorption capacity and is expected to be a very promising adsorbent.
参考文献

[1] IBARRA-RODRGUEZ M, SNCHEZ M. Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations[J]. Adsorption, 2020, 26(4): 597-605.

[2] AHMADI PEYGHAN A, HADIPOUR N L, BAGHERI Z. Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies[J]. The Journal of Physical Chemistry C, 2013, 117(5): 2427-2432.

[3] ZHAO Z C, XIE Y B. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires[J]. Journal of Power Sources, 2018, 400: 264-276.

[4] WU J J, RODRIGUES M T F, VAJTAI R, et al. Tuning the electrochemical reactivity of boron- and nitrogen-substituted graphene[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(29): 6239-6246.

[5] GUO X, WANG D, GUO Z, et al. SiBCN-precursor-derived gradient oxidation protective ceramic coating for C/C composites[J]. Surface and Coatings Technology, 2018, 350: 101-109.

[6] JIA H C, LI J, LIU Z Y, et al. Three-dimensional carbon boron nitrides with a broken, hollow, spherical shell for water treatment[J]. RSC Advances, 2016, 6(82): 78252-78256.

[7] WANG P F, WANG P F, GUO Y, et al. Selective recovery of protonated dyes from dye wastewater by pH-responsive BCN material[J]. Chemical Engineering Journal, 2021, 412: 128532.

[8] LIU Z W, ZHAO K, LUO J, et al. Highly efficient synthesis of hexagonal boron nitride short fibers with adsorption selectivity[J]. Ceramics International, 2019, 45(17): 22394-22401.

[9] WANG S Y, WANG G, WU T T, et al. BCN nanosheets templated by g-C3N4 for high performance capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(30): 14644-14650.

[10] 杨 琼,王传彬,章 嵩,等.硼碳氮薄膜的脉冲激光沉积及其光学性能[J].功能材料与器件学报,2010,16(4):358-362.

[11] SUGIYAMA T, TAI T, SUGINO T. Effect of annealing on dielectric constant of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition[J]. Applied Physics Letters, 2002, 80(22): 4214-4216.

[12] ULRICH S, KRATZSCH A, LEISTE H, et al. Variation of carbon concentration, ion energy, and ion current density of magnetron-sputtered boron carbonitride films[J]. Surface and Coatings Technology, 1999, 116/117/118/119: 742-750.

[13] LINSS V, HERMANN I, SCHWARZER N, et al. Mechanical properties of thin films in the ternary triangle B-C-N[J]. Surface and Coatings Technology, 2003, 163/164: 220-226.

[14] LIN T W, SU C Y, ZHANG X Q, et al. Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping[J]. Small (Weinheim an Der Bergstrasse, Germany), 2012, 8(9): 1384-1391.

[15] ZHENG Y, JIAO Y, GE L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie (International Ed in English), 2013, 52(11): 3110-3116.

[16] 梁丹丹,李兴发,王朝旭.硼、氮掺杂碳纳米管对苯酚废水催化降解的差异[J].工业水处理,2021,41(9):86-91.

[17] 姚伯元,黄广民,窦智峰,等.海南椰壳与椰壳渣制备高比表面积活性炭原料脱灰工艺[J].化工学报,2006,57(6):1458-1463.

[18] WANG G, ZHANG Y Q, WANG S Y, et al. Adsorption performance and mechanism of antibiotics from aqueous solutions on porous boron nitride-carbon nanosheets[J]. Environmental Science: Water Research & Technology, 2020, 6(6): 1568-1575.

[19] KARBHAL I, DEVARAPALLI R R, DEBGUPTA J, et al. Facile green synthesis of BCN nanosheets as high-performance electrode material for electrochemical energy storage[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(21): 7134-7140.

[20] CI L J, SONG L, JIN C H, et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nature Materials, 2010, 9(5): 430-435.

[21] FELLINGER T P, SU D S, ENGENHORST M, et al. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties[J]. Journal of Materials Chemistry, 2012, 22(45): 23996.

[22] HASSAN J, IKRAM M, UL-HAMID A, et al. Application of chemically exfoliated boron nitride nanosheets doped with Co to remove organic pollutants rapidly from textile water[J]. Nanoscale Research Letters, 2020, 15: 75.

[23] AL-KINANI A, GHEIBI M, EFTEKHARI M. Graphene oxide-tannic acid nanocomposite as an efficient adsorbent for the removal of malachite green from water samples[J]. Modeling Earth Systems and Environment, 2019, 5(4): 1627-1633.

[24] ALI H B, ISMAIL A M. Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics[J]. Journal of Polymer Research, 2021, 28(11): 1-17.

[25] JIANG F, DINH D M, HSIEH Y L. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels[J]. Carbohydrate Polymers, 2017, 173: 286-294.

[26] MITTAL H, MORAJKAR P P, AL ALILI A, et al. In-situ synthesis of ZnO nanoparticles using gum Arabic based hydrogels as a self-template for effective malachite green dye adsorption[J]. Journal of Polymers and the Environment, 2020, 28(6): 1637-1653.

[27] PAN X H, ZUO G C, SU T, et al. Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 106-113.

[28] QU W Y, YUAN T, YIN G J, et al. Effect of properties of activated carbon on malachite green adsorption[J]. Fuel, 2019, 249: 45-53.

[29] SHI Z N, LI L, XIAO Y X, et al. Synthesis of mixed-ligand Cu-MOFs and their adsorption of malachite green[J]. RSC Advances, 2017, 7(49): 30904-30910.

[30] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.

[31] MORENO-CASTILLA C. Adsorption of organic molecules from aqueous solutions on carbon materials[J]. Carbon, 2004, 42(1): 83-94.

[32] PENG X M, HU F P, LAM F L Y, et al. Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon[J]. Journal of Colloid and Interface Science, 2015, 460: 349-360.

[33] YUAN J, FENG L, WANG J X. Rapid adsorption of naphthalene from aqueous solution by naphthylmethyl derived porous carbon materials[J]. Journal of Molecular Liquids, 2020, 304: 112768.

[34] JI L L, WAN Y Q, ZHENG S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption[J]. Environmental Science & Technology, 2011, 45(13): 5580-5586.

[35] TIAN S J, DAI J D, JIANG Y H, et al. Facile preparation of intercrossed-stacked porous carbon originated from potassium citrate and their highly effective adsorption performance for chloramphenicol[J]. Journal of Colloid and Interface Science, 2017, 505: 858-869.

[36] PEYRAVI A, HASHISHO Z, CROMPTON D, et al. Porous carbon black-polymer composites for volatile organic compound adsorption and efficient microwave-assisted desorption[J]. Journal of Colloid and Interface Science, 2022, 612: 181-193.

林国强, 郭玉呈, 许蒙, 李建保, 陈拥军, 骆丽杰. 硼碳氮多孔材料的制备及其吸附再生性能研究[J]. 硅酸盐通报, 2022, 41(8): 2879. LIN Guoqiang, GUO Yucheng, XU Meng, LI Jianbao, CHEN Yongjun, LUO Lijie. Preparation of Boron Carbonitride Porous Material and Its Adsorption and Regeneration Performance[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2879.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!