作者单位
摘要
1 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110866
2 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110866 辽宁省农业信息化工程技术研究中心, 辽宁 沈阳 110866
为了快速、 准确的检测北方寒地水稻叶片的磷素含量, 分析水稻的长势情况, 为精准施肥以及稻田的科学管理提供依据, 以北方寒地水稻为研究对象, 以小区实验为基础, 使用海洋光学HR 2000+光谱仪获取水稻叶片高光谱反射率数据, 采用钒钼黄比色法对水稻叶片磷素含量进行测定。 采用SG平滑与多元散射校正(MSC)两种方法对水稻叶片高光谱数据进行预处理, 并将预处理后的光谱数据使用连续投影法(SPA)与无信息变量消除法(UVE)两种算法进行特征选择。 采用SPA算法筛选得到的特征共有11个, 其中位于可见光波段处的有6个, 分别为411、 420、 428、 442、 467和689 nm; 近红外波段处有5个, 分别为797、 850、 866、 965和976 nm; UVE算法筛选得到的特征共47个, 均位于可见光波段范围内, 分布在405~603 nm之间。 分别将这两种方法筛选出的特征波段的反射率作为输入, 构建极限学习机(ELM), BP神经网络以及狼群算法优化的BP神经网络(WPA-BP)三种水稻叶片磷素含量反演模型并加以分析。 结果表明: 以UVE算法筛选的特征反射率为输入量构建的三种模型的验证集R2在0.705 2~0.724 5之间, RMSE在0.017 4~0.020 4之间; 在相同的反演模型的条件下, 使用SPA算法筛选的特征反射率为输入量构建的模型预测效果更好, 三种模型的验证集R2在0.726 4~0.829 3之间, RMSE在0.018 0~0.021 1之间; 另外, 在利用这两种算法筛选到的特征进行建模时, 对比三种模型的预测结果发现, 经过狼群算法优化后的BP神经网络模型的精度明显高于极限学习机和BP神经网络, 其验证集的决定系数R2为0.803 4, RMSE为0.018 0。 鉴于此, 结合连续投影算法和狼群算法优化后的BP神经网络模型在北方寒地水稻叶片磷素含量高光谱反演中具有一定的优势, 可作为水稻叶片磷素含量的检测以及精准定量施肥的参考和借鉴。
水稻 高光谱数据 磷素含量 狼群算法 反演模型 Rice Hyperspectral data Phosphorus content Wolf pack algorithm Inversion model 
光谱学与光谱分析
2023, 43(5): 1442
作者单位
摘要
沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110866
开展水稻无人机高光谱解混, 获取水稻植株的高光谱反射率信息, 对于提高水稻理化参量的反演模型精度具有重要意义。 目前大多基于高光谱遥感影像自身数据进行解混, 运用算法模型进行高光谱数据解混, 将高光谱图像和可见光图像进行优势互补, 提出一种基于无人机高清影像与高光谱遥感影像融合的稻田无人机高光谱解混方法, 解决单一数据局限性问题, 增强光谱数据对地物的描述能力。 为了更好的计算端元丰度, 将同一目标区的高清数码正射影像与无人机高光谱遥感影像利用经纬度信息进行空间配准, 使得不同传感器获得的图片在几何位置上对齐, 通过SVM分类器的监督分类方法对可见光的数码正射影像进行地物分类, 利用地物分类的结果对应高光谱的一个像元, 从而得到一个像元内的端元丰度。 设相邻区域内的水体端元是相同的, 利用线性解混模型(LSMM)对相邻区域的混合像元进行解混, 最终获取水稻高光谱反射率信息。 结果表明对两种图片进行空间配准丰富了数据源信息, 有利于像元的端元丰度计算, 其中水稻端元丰度在70%以上解混效果最好, 丰度在50%以上解混效果一般, 丰度在30%以下解混效果较差; 选择监督分类方法进行地物分类, 精度达到99.5%, 面向对象方法分类精度为98.2%, 监督分类方法优于面向对象分类方法; 最终得到的混合像元分解反射率高于原混合像元反射率, 减少了水体混合部分对光谱数据的影响, 使得分解后水稻的光谱反射率更加准确, 为水稻理化参量无人机成像高光谱遥感反演提供更加准确的科学依据。
高光谱 无人机 端元提取 水稻 混合像元 Hyperspectral UAV Endmember extraction Rice Mixed pixels 
光谱学与光谱分析
2022, 42(3): 947
作者单位
摘要
沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110161
利用光谱信息快速、 无损和准确的检测水稻冠层叶片叶绿素含量, 对水稻的长势评估、 精准施肥、 科学管理都具有非常重要的现实意义。 以东北粳稻为研究对象, 以小区试验为基础, 获取关键生长期的水稻冠层高光谱数据。 首先采用标准正态变量校正法(SNV)对光谱数据进行预处理, 针对处理后光谱数据, 以随机蛙跳(RF)算法为基础, 结合相关系数分析法(CC)和续投影算法(SPA), 提出一种融合两种初选波段的改进型随机蛙跳算法(fpb-RF)筛选叶绿素含量的特征波段, 并分别与标准RF, CC 和SPA方法进行对比。 以提取的特征波段作为输入, 结合线性模型和非线性模型各自优势, 提出一种高斯过程回归(GPR)补偿偏最小二乘(PLSR)的叶绿素含量混合预测模型(GPR-P): 利用PLSR法对水稻叶绿素含量初步预测, 得到叶绿素含量的线性趋势, 然后利用具有较好非线性逼近能力的GPR对PLSR模型偏差进行预测, 两者叠加得到最终预测值。 为了验证所提方法优越性, 以不同方法提取的特征波段作为输入, 分别建立PLSR、 最小二乘支持向量机(LSSVM)、 BP神经网络预测模型。 结果表明: 相同预测模型条件下, 改进fpb-RF算法提取特征波段作为输入可较好的降低模型复杂性、 提高模型预测性能, 各模型测试集的决定系数($R^{2}_{p}$)和训练集的决定系数($R^{2}_{c}$)均高于0.704 7。 另外, 在各算法提取特征波段进行建模时, GPR-P模型的$R^{2}_{c}$和$R^{2}_{p}$均高于0.755 3, 其中, 采用fpb-RF方法提取的特征波段作为输入建立的GPR-P模型预测精度最高, $R^{2}_{c}$和$R^{2}_{p}$分别为 0.781 5和0.779 6, RMSEC和RMSEP分别为0.904 1和0.928 3 mg·L-1, 可为东北粳稻叶绿素含量的检测与评估提供有价值的参考和借鉴作用。
水稻 叶绿素含量 光谱分析 特征波段提取 fpb-RF算法 混合预测模型 Rice Chlorophyll content Spectral analysis Feature band selection The fpb-RF algorithm Hybrid prediction model 
光谱学与光谱分析
2021, 41(8): 2556
作者单位
摘要
1 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110866
2 辽宁省农业信息化工程技术研究中心, 辽宁 沈阳 110866
在水稻抗倒伏育种中, 水稻茎秆纤维素含量作为重要的作物性状表现型数据, 用传统方法获取时受人力成本和时间成本的约束, 采集群体大小有限。 利用高光谱技术能够实现对作物性状信息的快速、 无损检测。 为探究水稻茎秆纤维素含量近红外光谱反演模型, 以田间小区试验的方式, 采集水稻灌浆期至成熟期茎秆基部倒2、 3节作为实验样本, 并在实验室内使用NIRQuest512型号高光谱仪测得茎秆近红外反射光谱数据; 采用标准变量正态变换(SNV)、 连续小波变换(CWT)及两种方法结合(SNV-CWT)对原始近红外光谱进行预处理, 经对比分析, 原始光谱经SNV处理后再通过CWT对应6尺度分解最优, 然后采用联合区间偏最小二乘法(SiPLS)、 迭代保留信息变量法(IRIV)对最优预处理(SNV-CWT)的光谱特征曲线进行光谱特征变量筛选, 分别提取了64个和16个特征变量; 为优化模型并提高其模型精度, 采用IRIV算法对SiPLS所选的特征变量进行二次筛选, 得到6个特征变量, 特征波长为1 200, 1 207, 1 325, 1 470, 1 482和1 492 nm, 最后基于优选出的特征变量分别建立水稻茎秆纤维素含量的支持向量机回归(εSVR)和核极限学习机(KELM)预测模型, 模型参数(惩罚系数C, 核函数系数γ和不敏感参数ε)分别采用灰狼算法(GWO)、 差分进化灰狼算法(DEGWO)和自适应差分进化灰狼算法(SaDEGWO)进行优化选择。 结果表明, 采用SNV-CWT方法光谱预处理后, 经SiPLS-IRIV方法筛选的特征变量构建的SaDEGWO优化的SVR模型精度最高, 模型参数C, γ, ε分别为302.838 2, 0.087 7, 0.070 8, 测试集的决定性系数(R2p)为0.880, 均方根误差(RMSEP)为15.22 mg·g-1, 剩余预测残差(RPD)为2.91, 表明模型具有较好的预测能力, 可为水稻茎秆纤维素含量预测提供参考。
水稻茎秆 纤维素 近红外光谱 光谱预处理 光谱特征变量 反演模型 Rice stem Cellulose Near-infrared spectroscopy Spectral pretreatment Spectral characteristic variables Inversion model 
光谱学与光谱分析
2021, 41(6): 1775
冯帅 1曹英丽 1,2,*许童羽 1,2于丰华 1,2[ ... ]金彦 1
作者单位
摘要
1 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110161
2 沈阳农业大学辽宁省农业信息化工程技术中心, 辽宁 沈阳 110161
为提供一种高效、 快速和无损的粳稻叶片氮素含量反演方法, 以粳稻小区试验为基础, 利用高光谱技术和室内化学实验, 获取粳稻分蘖期、 拔节期和抽穗期三个生育期共280组叶片高光谱数据以及相对应的水稻叶片氮素含量数据, 分析不同施氮水平的粳稻叶片光谱特征, 采用随机青蛙算法(random_frog)与迭代和保留信息变量算法(IRIV)相结合的方式筛选特征波段, 并将任意两个光谱波段随机组合构建差值植被指数DSI(Ri, Rj)、 比值植被指数RSI(Ri, Rj)和归一化植被指数NDSI(Ri, Rj), 分别将较优的特征波段组合和植被指数组合作为模型输入, 构建BP神经网络、 支持向量机(SVR)和非支配的精英策略遗传算法优化极限学习机(NSGA2-ELM)粳稻叶片氮素含量反演模型, 并对模型进行验证分析。 结果表明: 随着施氮水平的增加, 粳稻叶片近红外波段范围反射率逐渐升高, 在可见光波段范围反射率逐渐降低。 采用random_frog与IRIV相结合的方式筛选特征波段共得到8个特征波段, 其中可见光波段7个, 分别为414.2, 430.9, 439.6, 447.9, 682.7, 685.4和686.3 nm, 近红外波段仅有1个为999.1 nm, 该方法较好地剔除了干扰信息, 大大降低了波段间的共线性。 同时从三种植被指数(DSI(Ri, Rj), RSI(Ri, Rj), NDSI(Ri, Rj))与粳稻叶片氮素含量的决定系数等势图中可知, DSI(R648.1, R738.1), RSI(R532.8, R677.3)和NDSI(R654.8, R532.9)与叶片氮素含量相关性最好, R2分别为0.811 4, 0.829 7和0.816 9。 在输入参量不同的建模效果对比分析中, 以特征波段组合作为模型输入所构建的模型反演效果略优于植被指数组合, R2均大于0.7, RMSE均小于0.57。 而在反演模型间的对比分析中, 提出的NSGA2-ELM反演模型的估测效果要优于BP神经网络模型和SVR模型, 训练集决定系数R2为0.817 2, 均方根误差RMSE为0.355 5, 验证集R2为0.849 7, RMSE为0.301 1。 鉴于此, random_frog-IRIV筛选特征波段方法结合NSGA2-ELM建模方法在快速检测粳稻叶片氮素含量中具有显著优势, 可为粳稻田间精准施肥提供了参考。
高光谱数据 叶片氮素含量 特征波段 植被指数 反演模型 Hyperspectral data Leaf nitrogen content Characteristic band Vegetation index Inversion model 
光谱学与光谱分析
2020, 40(8): 2584
冯帅 1许童羽 1,2于丰华 1,2陈春玲 1,2[ ... ]王念一 1
作者单位
摘要
1 沈阳农业大学信息与电气工程学院, 辽宁 沈阳 110161
2 沈阳农业大学辽宁省农业信息化工程技术中心, 辽宁 沈阳 110161
为探究遥感监测水稻冠层叶片氮素含量的较优高光谱反演模型, 以水稻小区试验为基础, 获取了不同生长期水稻冠层高光谱数据。 在综合比较一阶导数变换(1-Der)、 标准正态变量变换(SNV)和SG滤波法等处理方法基础上, 提出一种将SNV与一阶导数变换的SG滤波法相结合的光谱处理方法(SNV-FDSGF), 并将处理后的数据经无信息变量消除法(UVE)与竞争自适应重加权采样法(CARS)选出不同生长期的敏感波段。 将各生长期的敏感波段两两随机组合, 并构建与水稻叶片含氮量相关性较高的差值光谱植被指数(DSI)、 比值光谱植被指数(RSI)、 归一化光谱植被指数(NDSI)。 其中分蘖、 拔节和抽穗3个时期的最优植被指数和决定系数R2分别为: DSI(R857, R623), 0.704; DSI(R670, R578), 0.786; DSI(R995, R508), 0.754。 以各生长期内的较优的三种植被指数作为输入分别构建自适应差分优化的极限学习机(SaDE-ELM)、 径向基神经网络(RBF-NN)以及粒子群优化的BP神经网络(PSO-BPNN)反演模型。 结果表明: SaDE-ELM建模效果最好, 在模型稳定性和预测能力上比RBF-NN和PSO-BPNN都有了明显提高, 各生长期反演模型的训练集和验证集决定系数R2均在0.810以上, RMSE均在0.400以下, 可为东北水粳稻冠层叶片含氮量的检测与评估提供科学和技术依据。
水稻 氮素 无人机 高光谱处理 植被指数 反演模型 Rice Nitrogen Unmanned aerial vehicle Hyperspectral processing Vegetation index Inversion model 
光谱学与光谱分析
2019, 39(10): 3281

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!