作者单位
摘要
上海海洋大学信息学院,上海 201306
设计了一种多阶段水下图像增强模型,可以同时将空间精细纹理和高级上下文信息两种特征融合。模型由三个阶段组成,前两个阶段采用编码器-解码器结构,第三阶段则采用并行注意子网,所提模型可以同时学习空间细节和上下文信息两种特征,并且引入了监督注意力模块,能够加强特征学习,还设计了一个跨阶段特征融合机制用来巩固前后子网的中间特征。最后将所提模型与其他水下增强模型在同一测试集上运行,从运行结果得出,所提模型处理后的水下图像在主观视觉效果和客观评价质量上均优于大部分对比算法,在Test-1测试集上,峰值信噪比和结构相似度分别达到了26.2962 dB和0.8267。
图像处理 水下图像增强 多阶段 空间细节 监督注意力 
激光与光电子学进展
2024, 61(8): 0837003
作者单位
摘要
1 西安工业大学光电工程学院,陕西 西安 710021
2 中国科学院西安光学精密机械研究所光子制造系统与应用研究中心,陕西 西安 710119
液晶空间光调制器(LCSLM)加载计算全息图实现激光分束时,会在焦平面处产生零级光干扰,为了解决这一情况,提出一种加载达曼光栅灰度图至液晶空间光调制器的方法,利用相消干涉,从而消除零级光干扰。基于模拟退火算法,求解出相位转折点集,在VirtualLab中进行仿真模拟,利用MATLAB软件编写生成达曼光栅灰度图的脚本文件,搭建基于硅基液晶空间光调制器(LCOSSLM)的验证系统,对调制效果进行测验。结果表明:通过加载达曼光栅灰度图进行激光分束,在CCD视场内明显去除了零级光干扰,且实际分束效果与仿真模拟结果相近,在一维五分束下的分束均匀度达97.190%,优于GSW算法生成的光栅形式全息图的调制效果。以大光点间距进行一维二、七分束的效果观测,分束均匀度分别达98.453%、96.820%,又进行二维分束观测,测量分束均匀度可达95.436%,且均未在CCD视场内观测到零级光。
液晶空间光调制器 飞秒激光 纯相位调制 达曼光栅 衍射结构 
激光与光电子学进展
2024, 61(4): 0411008
作者单位
摘要
1 中国科学院西安光学精密机械研究所 光子制造系统与应用研究中心,陕西 西安 710119
2 中国科学院大学 光电学院,北京 100049
通过搭建飞秒时间分辨的泵浦探测阴影成像系统,研究了聚焦的飞秒激光脉冲产生空气等离子体的瞬态演化特性,并对不同聚焦条件下空气等离子体的时间特性进行了数值模拟。实验结果表明:聚焦的飞秒激光电离空气等离子体的电子瞬态密度峰值先升高后缓慢下降;同时得到了高时间分辨下的电离速度变化与电子数密度的空间分布。计算结果显示:更高的单脉冲能量对应更高的饱和电子数密度,高数值孔径聚焦条件下隧穿电离也更早出现,表明飞秒时间分辨的泵浦探测阴影成像可为超快激光微加工的瞬态过程提供观测手段,同时可对超快激光微加工过程中的等离子屏蔽效应提供机理解释与加工工艺的优化参考。
超快激光 等离子体 泵浦探测阴影成像 激光微加工 激光电离 ultrafast lasers plasma pump-probe shadow imaging laser micromachining laser ionization 
红外与激光工程
2023, 52(11): 20230158
作者单位
摘要
1 中国科学院西安光学精密机械研究所光子制造系统与应用研究中心,陕西 西安 710119
2 中国科学院大学,北京 100049
为研究飞秒激光加工硬脆透明材料时存在的“微裂纹”与“诱导条纹”等共性工艺问题,利用飞秒时间分辨泵浦探测阴影成像技术,对飞秒激光多脉冲烧蚀石英玻璃过程中的电子动力学过程进行成像,分析了激光脉冲电离材料初期(700 fs之前)等离子体丝的演化情况。多脉冲诱导微结构的存在使成丝区域分布在微结构的两侧与光脉冲传播的轴线方向,前者主要是由微结构侧壁对光脉冲的折射造成的,而后者则是由微结构底面与侧壁形貌不同导致的光程差引起的。实验结果揭示了多脉冲加工过程中脉冲串诱导微结构对后续光场的重塑效应,该效应影响了等离子体成丝区域与能量沉积的分布,这是共性工艺问题产生的核心机制。
激光技术 飞秒激光微加工 泵浦探测阴影成像 多脉冲烧蚀 等离子体 
中国激光
2023, 50(24): 2402101
闫庆 1彭波 1汪丽 1,*王东 1[ ... ]华灯鑫 1
作者单位
摘要
1 西安理工大学 机械与精密仪器工程学院,西安 710048
2 中国科学院西安光学精密机械研究所 光子制造系统与应用研究中心,西安 710119
为了避免对存在空气内腔器件加工过程中对壁损伤问题,需要实时判断孔穿透状态。针对该问题提出基于激光诱导击穿光谱检测技术的飞秒激光制孔的孔穿透检测方法,选取Cr(I)521.531 nm为特征发射光谱,利用特征谱线强度的变化实现孔穿透状态的判断。设计了光谱检测实验系统并在孔加工实验过程中实现了特征光谱的采集与孔穿透状态的判断,验证了该方法在解决孔加工过程中避免产生对壁损伤问题的可行性。
激光冷加工 激光诱导击穿光谱 对壁损伤 特征谱线 穿透检测 Laser cold machining Laser-induced breakdown spectroscopy Contramural damage Characteristic spectral lines Penetration detection 
光子学报
2023, 52(3): 0352119
作者单位
摘要
1 深圳技术大学工程物理学院,先进材料测试技术研究中心,深圳市超强激光与先进材料技术重点实验室,广东 深圳 518118
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
中国激光
2022, 49(24): 2416001
曹雪 1,2,3,4李峰 1,*赵华龙 1王屹山 1,*[ ... ]沈德元 4
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 西安交通大学 电子科学与工程学院 陕西省信息光子技术重点实验室,西安 710049
3 中国科学院大学,北京 100049
4 江苏师范大学 物理与电子工程学院 江苏省先进激光材料与器件重点实验室,江苏 徐州 221116
单晶光纤具有细长的晶体结构以及对泵浦光的波导传输特性,使其兼具晶体以及光纤的激光放大介质优点,其细长的晶体结构可以有效地进行散热,保证了在高功率运转下依然可以保证高光束质量,与传统的晶体棒相比,对泵浦光的波导特性使其具有更大的能量提取效率和放大增益,简单的行波放大结构使得系统易于集成。单晶光纤作为放大增益介质已广泛应用于高功率高能量超短脉冲激光放大技术中,并在科研、工业加工等领域具有重要的应用前景。本文重点介绍了单晶光纤的结构和制备方法,以及近年来1 μm波段基于单晶光纤的超短脉冲放大技术研究的主要方法及结果,包括本课题组取得的主要进展,探讨和展望了单晶光纤放大技术的前景和发展方向。
单晶光纤 超短脉冲 大能量 高功率 啁啾脉冲放大 Singel crystal fiber Ultrashort pulse High energy High power Chirped pulse amplification 
光子学报
2022, 51(8): 0851513
王珊 1,2赵卫 1赵华龙 1,*周峰 3[ ... ]杨小君 4,**
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
3 中国一汽无锡油泵油嘴研究所,江苏 无锡 214063
4 西安中科微精光子制造科技有限公司,陕西 西安 710119
飞秒光纤激光器具有脉宽极短,瞬时功率高,对加工材料无选择性等特点,被广泛应用于精密微孔制造领域。为此,提出了一种高精度轨迹可调光束扫描系统,利用电机控制偏转光楔组和平行平板组相对于激光光轴的角度,再通过聚焦透镜缩小光斑,实现精准控制下飞秒激光的旋转扫描,解决了目前高深径比、倒锥孔加工困难的问题。将该系统应用于汽车喷油嘴油孔加工,实现了加工孔径的孔径为25~800 μm,孔径误差≤±2 μm;在锥度孔加工中可实现微孔锥度-5°~+5°;实现了深径比为20∶1的微孔加工。
光学设计 飞秒激光加工 倒锥孔 高深径比 喷油嘴 
激光与光电子学进展
2022, 59(11): 1122002
作者单位
摘要
1 中国科学院西安光学精密机械研究所光子制造系统与应用研究中心,陕西 西安 710119
2 西安中科微精光子制造科技有限公司,陕西 西安 710119
汽车喷油嘴的喷油孔加工一般使用工装夹具进行定位并建立坐标系,工装夹具制造精度和安装误差会导致孔径、孔形以及孔的位置与理论值有较大的偏差,从而影响喷油嘴工作的可靠性,这对柴油机的整体性能、排放指标的稳定性甚至柴油机工作的可靠性产生严重影响。基于此,提出了一种基于多特征点匹配算法的高精度自适应定位技术。通过在真实的燃油喷嘴上测量若干(最少6个)特征点的空间位置,以模型中给出的特征点测量数据为基础,计算实际工件与理论模型在机床坐标系下的精确定位参数,以此计算工件上所有待加工孔的机床参数。实验结果表明,工件定位精度小于等于0.1 mm。该定位技术能有效减小孔加工偏差,是解决燃油喷嘴定位精度的一种有效可行的方案。
测量 激光加工 复杂曲面 多特征点匹配 自适应定位 误差分析 
激光与光电子学进展
2022, 59(5): 0512003
李睿 1,2,*杨小君 1赵卫 1贺斌 1[ ... ]王宁 1
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
针对熔覆成型件表面粗糙的难题,提出了在成形过程中对熔覆层侧壁进行飞秒激光精密加工的方法,重点研究了精密加工过程中飞秒激光的能量密度、能量分布、光斑重叠率对熔覆层侧壁粗糙度的影响规律,结果表明:当焦平面处飞秒激光的能量为高斯分布,加工得到的熔覆层侧壁表面粗糙度Ra<3 μm时,激光能量密度介于0.12~0.34 J/cm2之间;当能量为平顶分布并且加工后熔覆层侧壁表面粗糙度Ra<3 μm时,最佳能量密度范围为0.13~0.66 J/cm2;同等参数条件下,平顶能量分布激光加工得到覆层侧壁粗糙度小于能量高斯分布时的粗糙度数值。熔覆层侧壁粗糙度随光斑重叠率的增加先减小后增大,实验获得的最佳重叠率范围为78%~85%。
飞秒激光微加工 激光熔覆成型 熔覆层 粗糙度 femtosecond laser micromachining laser cladding forming cladding layer roughness 
红外与激光工程
2015, 44(11): 3244

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!