作者单位
摘要
山东理工大学农业工程与食品科学学院, 山东 淄博 255000
使用便携式近红外(901~1 650 nm)和可见光(400~900 nm)光谱仪结合多变量分析方法无损检测水稻水分含量, 选用100种不同品种的水稻并采集其光谱信息, 其中粳稻52种, 籼稻34种, 糯稻14种。 采用GB 5009.3—2016中的直接干燥法测定每种水稻样本的水分含量。 利用蒙特卡洛偏最小二乘法(MCPLS)剔除水稻样本中的异常值, 基于近红外和可见光光谱的数据集分别剔除8个和4个异常值。 采用基于联合X-Y距离的样本划分法(SPXY)按照3: 1的比例划分样品, 近红外和可见光数据集分别得到69、 72个校正集和23、 24个预测集。 采用正交信号校正(OSC)、 多元散射校正法(MSC)、 去趋势变换(De-trend)、 标准正态变换(SNV)、 基线校正(Baseline)、 Savitzky-Golay 卷积导数(S-G导数)、 标准化(Normalize)、 移动平均平滑(moving average)、 Savitzky-Golay卷积平滑处理法(S-G平滑)共9种算法对原始光谱数据进行预处理, 基于近红外和可见光光谱的OSC、 SNV和OSC、 Moving average预处理效果较好, 进行后续模型的处理。 选择特征波长以减小光谱信息冗余并提高模型检测效果, 基于近红外和可见光光谱的最佳波长选择方法分别为连续投影算法(SPA)和竞争性自适应重加权算法(CARS), 分别保留15, 39个特征波长。 之后, 建立偏最小二乘回归(PLSR)、 主成分回归(PCR)模型。 结果表明, 基于近红外和可见光光谱的最优模型分别为SPA-PLSR和OSC-CARS-PCR, 其预测集相关系数(R2P), 预测集均方根误差(root mean square error forprediction, RMSEP)和预测集归一化均方根误差(normalized root mean square error, NRMSEP)分别为0.810 3、 0.802 1, 0.412、 0.388和3.62%、 3.34%。 基于近红外光谱的SPA-PLSR模型预测效果更好, 鲁棒性更高, 预测效果好于可见光光谱。 本研究验证了便携式近红外和可见光光谱仪快速、 无损检测水稻中水分含量的可行性, 为水稻收获、 贮藏等过程水分含量的测定提供技术支持, 为后续便携式光谱仪的开发提供参考。
近红外光谱 可见光光谱 水稻 水分含量 便携式 快速检测 Near-infrared spectra Visible spectra Rice Moisture content Portable Rapid detection 
光谱学与光谱分析
2023, 43(7): 2059
作者单位
摘要
山东理工大学农业工程与食品科学学院, 山东 淄博 255000
采用近红外高光谱成像技术对大豆水分含量进行快速无损检测, 实现大豆水分含量可视化。 采集了96个不同品种大豆样本在900~2 500 nm的高光谱图像, 采用直接干燥法测量每个大豆样品的水分含量。 利用系统自带的HSI Analyzer软件提取图像感兴趣区域(ROI)的平均光谱信息, 代表样品的光谱信息。 利用SPXY算法划分样品校正集和预测集, 并保留938~2 215 nm波段范围内的光谱数据。 采用移动平滑(moving average)、 S-G平滑、 基线校正(baseline)、 归一化(normalize)、 标准正态变量变换(standard normal variate, SNV)、 多元散射校正(multiple scattering correction, MSC)、 去趋势(detrending)共7种光谱预处理方法, 发现Normalize方法处理后的PLSR模型效果较好。 为了去除光谱冗余信息, 简化预测模型, 采用连续投影算法(SPA)、 竞争性自适应加权算法(CARS)、 无信息消除变量法(UVE)提取特征波长, 其中SPA, CARS和UVE三种算法优选出14, 16和29个波长, 分别占总波长的6.5%, 7.4%和13.4%。 分别对938~2 215 nm波段光谱和特征波长建立预测模型, 并将效果较优的模型与Normalize方法结合。 建立的14种预测模型效果相比较, 发现SPA算法筛选的特征波长建模预测效果较好, 并优选出Normalize-SPA-PCR模型, 模型的RC2RP2值较高, 分别为0.974 6和0.977 8, RMSEP和RMSECV值较低, 分别为0.238和0.313, 模型的稳定性和预测性较好, 可以对大豆水分含量进行准确预测。 将Normalize-SPA-PCR模型作为大豆水分含量可视化预测模型, 计算高光谱图像每个像素点的水分含量, 得到灰度图像, 对灰度图像进行伪彩色变换, 得到大豆水分含量可视化彩色图像。 对预测集的24个大豆品种进行可视化处理, 发现不同水分含量大豆的可视化图像颜色不同, 水分含量变化对应的颜色变化较为明显。 结果表明, 高光谱成像技术结合化学计量学可以准确快速无损预测大豆水分含量, 实现大豆水分含量可视化, 为大豆收获、 贮藏加工过程中水分含量检测提供了技术支持。
高光谱成像技术 水分含量 大豆 无损检测 可视化 Hyperspectral imaging Moisture content Soybean Non-destructive detection Visualization 
光谱学与光谱分析
2022, 42(10): 3052

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!