Author Affiliations
Abstract
1 Institute for Solid State Physics and Optics Wigner Research Centre for Physics P.O. Box 49, H-1121 Budapest, Hungary
2 Institute of Physics, University of Szeged Dom ter 9, H-6720 Szeged, Hungary
3 Ministry of Higher Education and Scientific Research Baghdad 10065, Iraq
4 Physiology Department, College of Medicine University of Misan, Al-Amarah, Misan 62001, Iraq
5 Uzhhorod National University, Uzhhorod 88015 Transcarpathia, Ukraine
6 Science Medical Center, Saratov State University 83 Astrakhanskaya Str., Saratov 410012, Russia
7 Optoelectronics and Measurement Techniques Laboratory University of Oulu, 90570 Oulu, Finland
8 Laboratory of Laser Diagnostics of Technical and Living Systems Institute of Precision Mechanics and Control of the Russian Academy of Sciences 24 Rabochaya, Saratov 410028, Russia
9 Interdisciplinary Laboratory of Biophotonics National Research Tomsk State University 36 Lenin Avenue, Tomsk 634050, Russia
Confocal Raman microspectroscopy (CRM) with 633- and 785-nm excitation wavelengths combined with optical clearing (OC) technique was used for ex-vivo study of porcine skin in the Raman fingerprint region. The optical clearing has been performed on the skin samples by applying a mixture of glycerol and distilled water and a mixture of glycerol, distilled water and chemical penetration enhancer dimethyl sulfoxide (DMSO) during 30 min and 60 min of treatment. It was shown that the combined use of the optical clearing technique and CRM at 633nm allowed one to preserve the high probing depth, signal-to-noise ratio and spectral resolution simultaneously. Comparing the effect of different optical clearing agents on porcine skin showed that an optical clearing agent containing chemical penetration enhancer provides higher optical clearing efficiency. Also, an increase in treatment time allows to improve the optical clearing efficiency of both optical clearing agents. As a result of optical clearing, the detection of the amide-III spectral region indicating well-distinguishable structural differences between the type-I and type-IV collagens has been improved.
CRM skin collagen types I and IV amide III tissue optical clearing glycerol DMSO 
Journal of Innovative Optical Health Sciences
2021, 14(5): 2142003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!