作者单位
摘要
中国工程物理研究院应用电子学研究所,四川 绵阳 621900
未来极紫外光刻技术的发展亟需更高功率的光刻光源,能量回收型自由电子激光光源可以实现千瓦量级以上的功率输出,是一种极具潜力的高功率极紫外光刻光源。主要介绍了高功率能量回收型自由电子激光光源的工作原理、发展现状以及所面临的关键技术挑战。
激光光学 极紫外光刻 能量回收型直线加速器 自由电子激光 光阴极注入器 超导加速器 
中国激光
2024, 51(7): 0701007
作者单位
摘要
1 中国科学院 高能物理研究所 加速器中心,北京 100049
2 中国科学院大学 核科学与技术学院,北京 100049
高能同步辐射光源(HEPS)是国内首台第四代同步辐射光源,包括一个储存环、一个增强器以及一个直线加速器。作为典型的低发射度储存环(LER),其动力学孔径远小于物理孔径,对此选择了一种新颖的在轴置换注入方案。其中,增强器负责实现束流从500 MeV到6 GeV的升能。为了降低增强器引出冲击磁铁的冲击强度,在引出环节之前使用4台凸轨磁铁来辅助冲击磁铁完成这一动作。凸轨磁铁磁场波形要求底宽小于1 ms的半正弦波。根据仿真以及测试结果,采用绝缘栅双极型晶体管(IGBT)串联快恢复二极管的经典LC谐振电路拓扑。此外,设计了能量回收支路,来降低电容在充电过程中功率损耗以及对输出脉冲电流波形的影响。目前,已完成脉冲电源样机的研制与测试,各项结果表明,该脉冲电源能够满足高能光源增强器高能引出系统的各项要求。
高能同步辐射光源 注入引出 脉冲电源 LC谐振 能量回收 HEPS injection and extraction pulser LC resonance energy recovery 
强激光与粒子束
2024, 36(2): 025014
作者单位
摘要
浙江师范大学 精密机械与智能结构研究所,浙江金华321004
为提高压电振动俘能器的环境适应性,提出一种磁耦合式可调频压电振动俘能器,利用激励器上主动磁铁和组合换能器上被动磁铁间的耦合作用及横摆簧片实现压电振子的单向限幅激励。通过对俘能器及磁对的建模和仿真分析,获得了俘能器结构参数对俘能器输出性能的影响,在此基础上制作俘能器样机并进行实验研究,获得了俘能器纵摆质量m1、横摆质量m2、横向距离Lx、纵向距离Ly、竖向距离Lz及负载电阻对俘能器输出性能的影响规律。结果表明:存在两阶谐振频率f1f2使输出电压出现峰值Un1Un2,调节m1m2LxLyLz会影响f1f2Un1Un2;其他条件一定时,存在最佳负载电阻2 200 kΩ使输出功率达到0.122 mW。通过选择合适的结构参数能够提升俘能器的有效频带和输出电压,对增强压电振动俘能器的可靠性和频率适应性具有一定的参考价值。
压电 可调频 磁耦合 组合换能器 能量回收 piezoelectric adjustable frequency magnetic coupling combination transducer energy recovery 
光学 精密工程
2024, 32(1): 73
作者单位
摘要
山东理工大学 电气与电子工程学院,山东 淄博 255020
为了降低空心脉冲发电机的能量损耗与励磁绕组发热,提出了一种具有剩余磁能回收功能的脉冲发电机励磁电路。通过在电容支路设置调节电感,使放电完成后的电容电压反向,迫使晶闸管与二极管关断,以切换电流流通路径来实现剩余励磁能量到电容器中的转移。该电路使用晶闸管作为主开关,电流关断能力强的特点使其在大功率脉冲发电机的应用中具有一定优势。对提出的励磁能量回收电路的工作过程进行了介绍,仿真分析了剩余能量回收对励磁绕组能量损耗和脉冲发电机发热的影响,并对该电路拓扑的工作原理进行了实验验证。结果表明:该电路可以迅速回收励磁绕组中的剩余能量,缩短励磁电流续流时间,减少励磁损耗与能量损耗。仿真与实验结果反映的规律与电路原理一致,表明了该电路方法的可行性。
脉冲发电机 能量回收 实验研究 脉冲功率电源 电路拓扑 pulse alternator energy recovery experimental research pulse power supply circuit topology 
强激光与粒子束
2023, 35(11): 115001
作者单位
摘要
中国工程物理研究院应用电子学研究所,四川 绵阳 621900
中国工程物理研究院红外太赫兹自由电子激光装置是一台用于材料、光谱、生物、医学等领域前沿研究的多功能用户装置,在实验室现有的太赫兹自由电子激光装置(CTFEL)基础上,拟新增两套2×9-cell超导加速单元和两台波荡器,将电子能量提升至最大50 MeV,输出频率覆盖范围拓展至0.1~125 THz,最大宏脉冲功率大于100 W。同时,采用跑道型束线设计,拟建设一台小型能量回收型直线加速器实验研究平台。本文主要介绍了中国工程物理研究院红外太赫兹自由电子激光装置的总体设计、工作模式以及用户实验站布局。
激光器 自由电子激光 红外太赫兹 超导加速器 波荡器 能量回收型直线加速器 
中国激光
2023, 50(17): 1718001
作者单位
摘要
1 北京大学 物理学院 重离子物理研究所,北京 100871
2 核物理与核技术国家重点实验室,北京 100871
能量回收技术将使用后的电子束进行能量回收,用于加速后续束团,可大大减少加速器消耗的射频功率和有害辐射。基于能量回收技术的光源除节能环保外,还具有束团短、发射度低的特点,可有效提高光源的峰值亮度和相干性,是一种很有潜力的未来先进光源。介绍能量回收直线加速器技术的基本原理、相关关键物理问题和技术以及能量回收直线加速器发展现状,最后简要介绍几个国际上提出的典型能量回收直线加速器光源方案。
能量回收 束流崩溃效应 强流注入器 强流超导腔 能量回收直线加速器光源 energy recovery beam break-up high-current injector high-current SRF cavity energy recovery linac light source 
强激光与粒子束
2022, 34(10): 104011
作者单位
摘要
西南交通大学 物理科学与技术学院,成都 610031
为提升脉冲功率系统中脉冲变压器的磁芯利用率,提出了一种基于能量回收原理的脉冲变压器复位系统。根据磁芯磁滞回线分析了基于能量回收原理复位系统在一个周期内磁感应强度的变化过程,推导给出了脉冲变压器励磁电流、复位电容电压在不同阶段的求解公式。建立了基于能量回收原理脉冲变压器复位系统的仿真模型,通过仿真结果验证了复位系统理论分析和求解公式正确性。在此基础上构建了基于脉冲变压器升压及能量回收复位系统的脉冲调制器试验平台,在相同脉冲宽度下对比有复位系统和无复位系统脉冲调制器的励磁电流,结果表明,有复位系统脉冲调制器可有效提高磁芯的利用率。对有复位系统的脉冲调制器进行重频实验,结果表明复位系统可实现1 kHz重频稳定工作。
能量回收 脉冲变压器 复位 磁感应增量 励磁电流 energy recovery pulse transformer reset incremental magnetic induction exciting current 
强激光与粒子束
2022, 34(9): 095012
作者单位
摘要
成都致研新能电子科技有限公司, 成都 610031
串联型能量回收电路从电路结构上保证了异常条件下脉冲功率系统中充电电源的安全,但恒流充电电源经回收电感向储能电容充电时会引起回收电路的振荡,不仅会造成充电电源输出过压和回收电感损耗增加,还会导致充电电压一致性明显变差等问题。在分析了回收电路振荡特性的基础上,提出了在回收电感两端并接旁路开关和双路充电输入的电路结构以及相应的充电控制方法,不仅可以抑制回路振荡从而提高充电一致性,还可以消除回收电感和旁路开关的不必要损耗且控制方法也简单通用。对包含有串接型回收电路的600 V/400 A充电系统进行了电路仿真和实验验证,实验结果表明:在600 V重频条件下,回收电路的改进方案可将储能电容电压的充电一致性偏差由10 V降低到2.6 V,对应的相对偏差由1.7%降低到0.5%以内。
能量回收 恒流充电 充电电源 振荡抑制 energy recovery constant current charging charging power supply oscillation suppression 
强激光与粒子束
2019, 31(5): 055001
作者单位
摘要
国防科技大学光电科学与工程学院, 长沙 410073
介绍了欧洲从事自由电子激光研究的几个重要实验室的概况和研究进展。简要分析了近期欧洲在发展短波长、高输出功率、高效率自由电子激光方面的相关计划和发展情况。
自由电子激光 同步辐射 X射线 能量回收 
激光与光电子学进展
2007, 44(6): 43
作者单位
摘要
中国电子科技集团公司第五十五研究所,南京,210016
目前彩色PDP的功耗比较大,这主要是由于它的发光效率比较低,高压高速电路损耗较大,以及显示屏寄生电容的充、放电而带来的无用功耗比较大而造成的.为了降低彩色PDP的功耗,介绍了能量恢复技术、降低电路损耗的电路技术、以及多种提高发光效率的驱动方式等多种方法,这些方法的综合采用,可以显著降低PDP的功耗.
平板显示 等离子体显示 低功耗 能量恢复 驱动技术 FPD PDP low power consumption energy recovery driving technique 
光电子技术
2005, 25(2): 108

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!