作者单位
摘要
1 中国科学院 高能物理研究所 加速器中心,北京 100049
2 中国科学院大学 核科学与技术学院,北京 100049
高能同步辐射光源(HEPS)是国内首台第四代同步辐射光源,包括一个储存环、一个增强器以及一个直线加速器。作为典型的低发射度储存环(LER),其动力学孔径远小于物理孔径,对此选择了一种新颖的在轴置换注入方案。其中,增强器负责实现束流从500 MeV到6 GeV的升能。为了降低增强器引出冲击磁铁的冲击强度,在引出环节之前使用4台凸轨磁铁来辅助冲击磁铁完成这一动作。凸轨磁铁磁场波形要求底宽小于1 ms的半正弦波。根据仿真以及测试结果,采用绝缘栅双极型晶体管(IGBT)串联快恢复二极管的经典LC谐振电路拓扑。此外,设计了能量回收支路,来降低电容在充电过程中功率损耗以及对输出脉冲电流波形的影响。目前,已完成脉冲电源样机的研制与测试,各项结果表明,该脉冲电源能够满足高能光源增强器高能引出系统的各项要求。
高能同步辐射光源 注入引出 脉冲电源 LC谐振 能量回收 HEPS injection and extraction pulser LC resonance energy recovery 
强激光与粒子束
2024, 36(2): 025014
吴官健 1,2王磊 1,2王冠文 2史晓蕾 2[ ... ]陈锦晖 1,2,*
作者单位
摘要
1 中国科学院大学 核科学与技术学院,北京 100049
2 中国科学院 高能物理研究所 加速器中心,北京 100049
环形正负电子对撞机(CEPC)是一台周长100 km,最高能量为120 GeV的双环对撞机。为了满足不同能量粒子从增强器注入到对撞环,针对W和Z能量模式设计了对撞环离轴注入系统,用于实现束流的累积。为了提高注入效率,兼容不同注入能量,不同束流填充模式,同时尽可能减少注入过程中冲击磁铁对其它束团的扰动,要求对撞环离轴注入冲击磁铁系统是一个上升时间和下降时间小于200 ns,脉冲底宽调节范围为440~2420 ns的梯形波脉冲放电系统。和常见的集中参数型冲击磁铁相比,分布参数型冲击磁铁具有更优越的动态响应特性,适合产生一个前沿更加陡峭、波形更为理想的梯形波脉冲。根据CEPC的束流注入物理需求,完成了一台分布参数型冲击磁铁的物理设计和结构设计,并采用了PSpice和Opera程序进行模拟仿真。设计结果表明:冲击磁铁由26级LC单元结构叠装而成,磁铁总长为1018 mm,磁有效长度为942 mm;在[−20,20] mm磁铁孔径内,磁场强度为0.042 1 T,磁场均匀性优于±0.2%;冲击磁铁系统总上升时间(10%~90%)为193 ns,下降时间(90%~10%)为191 ns。理论分析、PSpice程序和Opera程序模拟均验证了磁铁设计方案的可行性。
CEPC 注入引出 离轴注入 快脉冲冲击磁铁 分布参数型冲击磁铁 circular electron-positron collider injection and extraction off-axis injection fast kicker delay-line kicker 
强激光与粒子束
2023, 35(5): 054002
陈锦晖 1,2,*王磊 2施华 2霍丽华 2[ ... ]史晓蕾 1
作者单位
摘要
1 中国科学院大学 核科学与技术学院, 北京 100049
2 中国科学院 高能物理研究所 加速器中心, 北京 100049
高能同步辐射光源(HEPS)是我国计划建造的下一代基于储存环的高亮度光源, 束流自然发射度已经接近衍射极限。作为典型的低发射度储存环(LER), HEPS的动力学孔径远小于物理孔径, 传统的离轴累积注入已经无法满足要求, 只能采用基于strip-line kicker的在轴注入方案。为了实现逐束团操控, HEPS要求注入kicker脉冲电源底宽(3%~3%)<10 ns, 半高宽(50%~50%)>4.5 ns, 幅度>±17.5 kV(50 Ω负载), 重复频率>50 Hz。高能同步辐射光源验证装置(HEPS-TF)工程研制了一台基于DSRD的双极性快脉冲电源性能样机, 在50 Ω负载上可以获得上升时间(10%~90%)<2.6 ns, 下降时间(90%~10%)<3.2 ns, 半高宽(50%~50%)>5 ns, 底宽(3%~3%)<10 ns, 幅度>±18 kV的脉冲高压, 可以满足HEPS注入基准方案--在轴置换注入的要求。
衍射极限光源 注入引出 在轴注入 带状线冲击器 快脉冲电源 HEPS HEPS DLSR injection and extraction on-axis injection strip-line kicker fast pulser DSRD DSRD 
强激光与粒子束
2019, 31(4): 040017
作者单位
摘要
1 中国科学院 近代物理研究所, 兰州 730000
2 中国科学院 研究生院, 北京 100049
根据兰州重离子治疗专用装置(HITFL)物理设计的要求,采用三维电磁场程序ANSYS建立HITFL环上注入引出高压静电偏转板的物理模型。模型中高压电极的倒角半径为20 mm,电极半宽度为55 mm,计算出静电偏转板物理要求区域内电场的非均匀度为-0.24%~0.24%,区间的电场集中系数为1.37(小于2),满足物理设计的要求。同时,利用了HIRFL-CSR(兰州重离子冷却储存环)工程CSRm环上注入引出高压静电偏转板物理设计的经验,HITFL环上的静电偏转板采用表面经过氧化处理的锻铝板材以满足耐压性和机械强度的要求。
注入引出 静电偏转板 电场非均匀度 电场集中系数 injection and extraction electrostatic deflector non-uniformity of electric field coefficient of electric field 
强激光与粒子束
2012, 24(12): 2877
作者单位
摘要
中国科学院,近代物理研究所,甘肃,兰州,730000
利用3维电磁场计算程序MAFIA对CSR注入引出静电偏转板的物理结构进行了理论设计.该偏转板高压电极材料采用表面经过阳极氧化处理的锻铝板材,倒角半径为20mm,电极半宽度60mm,其几何形状能够同时满足电场均匀性、耐压性及机械强度的要求,切割板电极采用半钨丝半钽板的结构,入口厚度不大于0.1mm.在设计基础上制造了偏转板模型,并对之进行了真空模拟试验,结果证明该高压静电偏转板的设计方案是合理的,基本满足物理实验要求.
注入引出 偏转板 冷却储存环 Injection and extraction Deflector Cooling storage ring 
强激光与粒子束
2004, 16(9): 1219

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!