Author Affiliations
Abstract
1 Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy, Genoa, Italy
2 Genoa Instruments, Genoa, Italy
3 University of Genoa, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Genoa, Italy
4 Istituto Italiano di Tecnologia, Nanoscopy and NIC@IIT, Genoa, Italy
Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spatiotemporal information, opening new perspectives for gentle and quantitative superresolution imaging. However, a flawless recording of this information poses significant challenges for the microscope data acquisition (DAQ) system. We present a DAQ module based on the digital frequency domain principle, able to record essential spatial and temporal features of photons. We use this module to extend the capabilities of established imaging techniques based on single-photon avalanche diode (SPAD) array detectors, such as fluorescence lifetime image scanning microscopy. Furthermore, we use the module to introduce a robust multispecies approach encoding the fluorophore excitation spectra in the time domain. Finally, we combine time-resolved stimulated emission depletion microscopy with image scanning microscopy, boosting spatial resolution. Our results demonstrate how a conventional fluorescence laser scanning microscope can transform into a simple, information-rich, superresolved imaging system with the simple addition of a SPAD array detector with a tailored data acquisition system. We expected a blooming of advanced single-photon imaging techniques, which effectively harness all the sample information encoded in each photon.
fluorescence lifetime image scanning microscopy digital frequency domain single photon 
Advanced Photonics
2024, 6(1): 016003
Author Affiliations
Abstract
1 Southern University of Science and Technology, College of Engineering, UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Shenzhen, China
2 City University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
3 Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
4 University of Technology Sydney, Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, Sydney, Australia
In light-sheet fluorescence microscopy, the axial resolution and field of view are mutually constrained. Axially swept light-sheet microscopy (ASLM) can decouple the trade-off, but the confocal detection scheme using a rolling shutter also rejects fluorescence signals from the specimen in the field of interest, which sacrifices the photon efficiency. Here, we report a laterally swept light-sheet microscopy (LSLM) scheme in which the focused beam is first scanned along the axial direction and subsequently laterally swept with the rolling shutter. We show that LSLM can obtain a higher photon efficiency when similar axial resolution and field of view can be achieved. Moreover, based on the principle of image scanning microscopy, applying the pixel reassignment to the LSLM images, hereby named iLSLM, improves the optical sectioning. Both simulation and experimental results demonstrate the higher photon efficiency with similar axial resolution and optical sectioning. Our proposed scheme is suitable for volumetric imaging of specimens that are susceptible to photobleaching or phototoxicity.
light-sheet fluorescence microscopy image scanning microscopy volumetric imaging pixel reassignment 
Advanced Photonics Nexus
2023, 2(1): 016001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!