Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Information Photonics Technology, Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
3 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices and Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China
4 Synergy Innovation Institute of GDUT, Heyuan 517000, China
Realizing high-fidelity optical information transmission through a scattering medium is of vital importance in both science and applications, such as short-range fiber communication and optical encryption. Theoretically, an input wavefront can be reconstructed by inverting the transmission matrix of the scattering medium. However, this deterministic method for retrieving light field information encoded in the wavefront has not yet been experimentally demonstrated. Herein, we demonstrate light field information transmission through different scattering media with near-unity fidelity. Multi-dimensional optical information can be delivered through either a multimode fiber or a ground glass without relying on any averaging or approximation, where their Pearson correlation coefficients can be up to 99%.
light field information transmission transmission matrix 
Chinese Optics Letters
2023, 21(12): 121101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!